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Introduction Problem Definition

What is Trajectory Optimization?

A continuous-time functional optimization problem subject to different
constraints.

Objective:

min
x(t),u(t)

Φ(x(tF )) +

∫ tF

t0

L(τ, x(τ), u(τ))dτ.

x(t), u(t) are state and control trajectories, dim x = n, dim u ∈ m.
Φ(·), L(·) are terminal and stage costs.
t0, tF are the initial and final time. They can also be treated as
decision variables.
Can be extended to multiple phases.

(NYU) Trajectory Optimization April 10, 2023 5 / 73



Introduction Problem Definition

What is Trajectory Optimization

Constraint sets:

System dynamics:
ẋ(t) = f (t, x(t), u(t)).

Path constraint:
h(t, x(t), u(t)) ≤ 0.

Boundary constraint:
g(tF , x(tF )) ≤ 0.

Control constraint:
u(t) ∈ U .
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Introduction Problem Definition

Comparison With Similar Terminologies

Trajectory optimization:

Often used in robotics. Interchangeable with OC in robotics.

Relies on optimization techniques. Computation side.

Optimal control:

Wider scope in decision making fields.

Wider methodology not limited to optimization, such as PMP, DP.

Path planning and Motion planning:

Find a valid path in the configuration space that moves the object
from the source to destination.

No dynamics is involved.

Searching methods (RRT), sampling based methods (PRM).

Kinodynamic planning:

A motion problem that has velocity, acceleration, and force/torque
constraints, and kinematic constraints such as avoiding obstacles.

Proposed by Donald (1993), predecessor of trajectory optimization.
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Introduction Method Classification

Classification of Computational Methods

Figure: Overview of trajectory optimization.
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Introduction Applications in Robotics

Applications in Robotics

A very fundamental approach in robotics.

Application domain:

Industrial robotics

Medical robotics

Service robotics

Space robotics

Autonomous driving

Robot type:

Aerial robots

Underwater robots

Wheeled robots

Legged robots

Swarm robots

Task objective:

Trajectory tracking.

Path planning (minimum energy, minimum time).

Collision avoidance and safety operation.
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Computational Methods Two Questions

Two Questions

Before we proceed, we may wonder ...

Why do we consider continuous-time settings in trajectory
optimization at the beginning?

What are the challenges to solve continuous-time problems?
(leads to parameterization and discretization)
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Computational Methods Two Questions

Why Continuous-time Settings?

Newton’s second law:

F = ma, or F = m
dv

dt
.

Most robots are composed by rigid bodies (motors, non-deformable links).
A robot can be described by a set of links and joints.

Figure: Common robots composed by rigid bodies.
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Computational Methods Two Questions

Why Continuous-time Settings?

The Lagrangian mechanics can be used to formulate the robot model in a
generalized coordinate system 1:

M(q)q̈ + C (q, q̇)q̇ + G (q) + J(q)T fext = u.

Euler-Lagrange Equations:

q ∈ Rn is the joint variable (n joints in total), q̇ is the velocity.

M(q) ∈ Sn++ is the generalized mass matrix.

C (q, q̇) accounts for centrifugal and Coriolis effects.

G (q) ∈ Rn relates to gravity forces.

J(q) is the velocity Jacobian and fext is external forces (not control).

u ∈ Rn is the control on the joint variable. e.g., motor forces.

1M. Spong, Robot Modeling and Control, 2008.
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Computational Methods Two Questions

Why Continuous-time Setting?

M(q)q̈ + C (q, q̇)q̇ + G (q) + J(q)T fext = u.

A Unified Robotics Description Format (URDF) file describes a robot.

Figure: Code snippet of a URDF file.

A URDF parser can identify q and computes M(q), C (q, q̇), J(q)
numerically given a joint variable q.
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Computational Methods Two Questions

Why Continuous-time Setting?

Two-link planner robot as an example.

Figure: Two-link planner robot.

Generalized coordinate qi
(rotation angle).

Link mass mi , moment of
inertia Ii .

Link length ℓi , center of
mass ℓci .
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Computational Methods Two Questions

Why Continuous-time Setting?

Link mass m1 = m2 = 1.

Moment of inertia I1 = I2 = 1.

Link length ℓ1 = ℓ2 = 1.

Center of mass ℓc1 = ℓc2 =
1
2 .

Gravity g = 10.

We have

M(q) =

[
7
2 + cos(q2)

5
4 + 1

2 cos(q2)
5
4 + 1

2 cos(q2)
5
4

]
,

C (q, q̇) =

[
−1

2 sin(q2)q̇2 −1
2 sin(q2)(q̇1 + q̇2)

1
2 sin(q2)q̇1 0

]
,

G (q) =

[
15 cos(q1) + 5 cos(q1 + q2)

5 cos(q1 + q2).

]
.
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Computational Methods Two Questions

Why Continuous-time Setting?

For real humanoid robots, such as Atlas, we have q ∈ R28.

Figure: Humanoid robot Atlas in Boston Dynamics.

(NYU) Trajectory Optimization April 10, 2023 21 / 73



Computational Methods Two Questions

What Challenges for Continuous-time Problem?

Analytical solutions are challenging to obtain under complex dynamics and
constraints.

Consider two-link planner robots with no constraints and quadratic costs:

min
x(t),u(t)

∥x(tF )∥22 +
∫ tF

t0

∥x(τ)∥22 + ∥u(τ)∥22

s.t. M(q)q̈ + C (q, q̇)q̇ + G (q) = u,

where x(t) = [q(t), q̇(t)]. In reality, we usually need q1 ∈ [0, π].
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Computational Methods Two Questions

What Challenges for Continuous-time Problem?

Constraints are also hard to process in continuous LQR problems.

min
u(·)

∫ ∞

0
∥x(t)∥22 + ∥u(t)∥22dt

s.t. ẋ = Ax + Bu

∥u(t)∥2 ≤ 1.

The HJB equation becomes

0 = min
∥u(t)∥2≤1

[
∂V

∂x
(Ax(t) + Bu(t)) + ∥x(t)∥22 + ∥u(t)∥22

]
.

We need to convert infinite dimensional problem into finite dimensional
approximation.
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Computational Methods Methods Overview

Methods Overview

Figure: Overview of trajectory optimization methods.
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Computational Methods Methods Overview

Method Overview

General formulation of trajectory optimization problem:

min
u(·)

J(u(·)) := Φ(x(tF )) +

∫ tF

t0

L(τ, x(τ), u(τ))dτ

s.t. ẋ(t) = f (t, x(t), u(t)),

h(t, x(t), u(t)) ≤ 0,

g(tF , x(tF )) ≤ 0,

u(t) ∈ U .

(TO)
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Computational Methods Methods Overview

Method Overview

From formulation techniques:

Direct methods directly work on (TO) and parameterize the problem
using different solution techniques.

Indirect methods construct optimality conditions of (TO) and solve
the conditions using different solution techniques.

From solution techniques:

Shooting: parameterize u(t) and simulate state trajectories; then
optimize u(t).

Multiple shooting: parameterize u(t) and simulate state trajectories
in multiple segment; then optimize u(t).

Collocation: parameterize u(t) and state trajectories, and specify
their dynamic relationship; then optimize u(t) and state trajectories.
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Computational Methods Direct Methods

Direct Shooting

Idea: parameterize the control and simulate the trajectory.

Ways to parameterize control u(t):

Base function approximation, uθ(t) =
∑c

i=1 θiψi (t).

Common choice of ψi (t): splines, B-splines
2.

Specifically,

Simulate x(t) using f and uθ.

Decision variable θ.

Use finite difference to compute gradient.

Need a good heuristic if constraints exist, i.e., h(x(t), uθ(t)) ≤ 0.

2A spline that passes n given knot points.
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Computational Methods Direct Methods

Direct shooting

Algorithm 1: Direct shooting.

1 Input: Initial condition x0, initial parameter θ(0) ;
2 for n = 0, 1, . . . do
3 Integrate x(tF ) and compute J(·) and g(tF , x(tF )) using uθ(n) ;

4 Let G = [J, g ], evaluate ∂G(θ(n))
∂θi

= [G (θ(n) + δi )− G (θ(n))]/δi ;

5 if g(tF , x(tF )) ≤ 0 and ∥∂J(·)∂θ ∥ < ϵ then
6 break;

7 Update θ(n+1) using ∂G(θ(n))
∂θ ;

Reason to write G = [J, g ]: use compatible simulations to evaluate
gradients of different functions.
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Computational Methods Direct Methods

Direct Shooting

We simulate the entire trajectory to reach the target, acting like shooting.

Figure: Schematic of shooting methods, from (Rao, 2009).
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Computational Methods Direct Methods

Direct Shooting — Example

We use the planner robot as an example.

min
u
∥xF − xd∥22 +

∫ T

0
u2(t)dt

s.t. xF =


l1 cos(q1(T )) + l2 cos(q1(T ) + q2(T ))
l1 sin(q1(T )) + l2 sin(q1(T ) + q2(T ))

v1(T )
v2(T )

 ,
q̇ = v ,

v̇ = M−1(q) (−C (q, v)− G (q) + u) ,

0 ≤ q1(t) ≤ π,
−1 ≤ ui (t) ≤ 1, i = 1, 2.
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Computational Methods Direct Methods

Direct Shooting — Example

We parameterize ui with θ0i + θ1i t + θ2i t
2, i = 1, 2.

Initialization 1: θ0i = θ1i = θ2i = 0.1, i = 1, 2.
initialization 2: θ0i = θ1i = 0.1, θ2i = 0, i = 1, 2.

(Two external animations)

(a) Objective in GD (b) Control
Figure: Direct shooting simulation. Sensitive to small changes. Step size
α = 1e − 5.
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Computational Methods Direct Methods

Direct Shooting

Advantage:

Effective for simple dynamics and no path constraints. e.g., launch
rockets, orbit transfer, and spacecraft control.

Small number of decision variables. Fast computation.

Issues:

Sensitivity. Perturbations near u(t0) propagate along the trajectory.

A single gradient evaluation requires simulating the trajectory.

Integration accuracy decreases for complex dynamics.

Bad heuristic can worsen the computation.
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Computational Methods Direct Methods

Direct Multiple Shooting

To address integration accuracy and sensitivity issues:

Divide [t0, tF ] into multiple intervals to process.

Parameterize u(t) in each interval (in contrast with direct shooting).

Enforce continuity.

Specifically,

Divide [t0, tF ] into [tk , tk+1], k = 0, . . . ,K − 1.

Parameterize u(t) in each [tk , tk+1] with θk , k = 0, . . . ,K − 1.

Determine state at time tk : {x(tk) := xk}Kk=0.

Simulate x̃(tk+1) using uθk and xk .

Set x̃(tk) = xk for each k = 1, . . . ,K .

Decision variables ⟨{xk}Kk=1, {θk}
K−1
k=0 ⟩.
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Computational Methods Direct Methods

Direct Multiple Shooting

xk are decision variables.

Continuity error dk =
∫
f (xk , uk)dt − xk+1. We want dk = 0.

Figure: Schematic of multiple shooting methods, from (Rantil et al., 2009).

(NYU) Trajectory Optimization April 10, 2023 37 / 73



Computational Methods Direct Methods

Direct Multiple Shooting

Algorithm 2: Direct Multiple Shooting.

1 Input: K , initial conditions {x (0)k }
K
k=1 and {θ(0)k }

K−1
k=0 ;

2 for n = 0, 1, . . . do

3 Integrate x̃(tk) using u
θ
(n)
k

and x
(n)
k−1 ;

4 Evaluate d
(n)
k = x̃(tk)− x

(n)
k and c =

∑K
k=1 ∥d

(n)
k ∥

2
2 ;

5 Evaluate J(·) and g(tF , x
(n)
K ) ;

6 Let G = [J, g , c], evaluate ∂G
∂θ and ∂G

∂x ;

7 if c < ϵ and g ≤ 0 and ∥ ∂J
∂(θ,x)∥ < ϵ then

8 break;

9 Update {x (n+1)
k }Kk=1 and {θ(n+1)

k }K−1
k=0 with ∂G

∂x and ∂G
∂θ ;
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Computational Methods Direct Methods

Direct Multiple Shooting — Example

Ways to parameterize u(t) in [tk , tk+1]:

uθ(t) =
∑

i θiψi (t).

Constant, uθ(τ) = θk , tk ≤ τ < tk+1. (zero-order holder).

We use linear systems3 as an example:

ẋ = Ax + Bu, x(0) = x0 ⇒ xk = Adxk + Bduk , xk := x(tk),

⇒ xK = AK
d x0 + BduK−1 + · · ·+ BK−1

d u0.

The optimization variables are {uk}K−1
k=0 .

h(xK ) := h(u0, . . . , uK−1), J(u0, . . . , uK−1) = · · · .

3We can integrate x(tk) analytically in linear systems.
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Computational Methods Direct Methods

Direct Multiple Shooting

Advantages:

Enhance robustness.

Parallel implementation of trajectory simulations.

Issues (similar to direct shooting):

Still need numerical integration for dynamics. Challenging for
complex dynamics.

Gradient evaluation relies on trajectory simulation.

Hard to incorporate path constraints.

Increased number of decision variables compared with direct shooting.
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Computational Methods Direct Methods

Direct Collocation

Issues for shooting and multiple shooting:

Need an ODE solver to integrate state trajectories.

Evaluate gradient requires integration.

Challenging to deal with path constraints.

Integration introduces errors anyway, why not parameterize the state?

Divide [t0, tF ] in to [tk , tk+1], k = 0, . . . ,K − 1.

Decision variables {xk+1, uk}K−1
k=0 .

Ensure path constraints are valid at (xk , uk) for each k .

Ensure terminal constraints are valid at xK .

Problems:

No numerical integrator. What is the relationship between xk and uk?
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Computational Methods Direct Methods

Detour — Collocation for ODE

A collocation method uses a finite-dimensional candidate solution
(usually polynomials) to approximate the solution of ODEs, PDEs, or
integral equations. The candidate solution satisfies the given equation at a
number of points called collocation points.

ẏ(t) = f (t, y(t)) ⇒ y(t) = y(tk) +

∫ t

tk

f (τ, y(τ))dτ, t ∈ [tk , tk+1],

⇒ y(tk+1) = y(tk) +

∫ tk+1

tk

f (τ, y(τ))dτ..

Collocation points:

τ1 ≤ τ2 ≤ · · · ≤ τN and τ1 = tk , τN = tk+1.

Values at the collocations y(τn), n = 1 . . . ,N.
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Computational Methods Direct Methods

Detour — Collocation for ODE

y(t) = y(tk) +

∫ t

tk

f (τ, y(τ))dτ, t ∈ [tk , tk+1].

We use a polynomial of degree N to approximate y(t) in [tk , tk+1]:

ỹ(t) = a0 + a1(t − tk) + · · ·+ aN(t − tk)
N .

The degree N equals to the number of collocation points.

We want to select the coefficients {an}Nn=0 such that

ỹ(tk) = y(tk).

collocation constraints: ˙̃y(τi ) = f (τi , y(τi )), i = 1, . . . ,N.
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Computational Methods Direct Methods

Direct Collocation

Back to the problem, we denote

δk := tk+1 − tk , xk := x(tk), uk := u(tk).

Forward Euler (N = 1):

Collocation points: t0, t2, . . . , tK−1.

ẋ = f (t, x , u) ⇒ xk+1 − xk = δk f (tk , xk , uk),

h(x(t), u(t)) ≤ 0 ⇒ h(xk , uk) ≤ 0, ∀k ,
g(x(tF )) ≤ 0 ⇒ g(xK ) ≤ 0

u(t) ∈ U ⇒ uk ∈ U , ∀k,∫ tF

t0

L(x(t), u(t))dt ⇒
K−1∑
t=0

δkL(xk , uk).
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Computational Methods Direct Methods

Direct Collocation

Backward Euler (N = 1):

Collocation points: t1, t2, . . . , tK .

ẋ = f (t, x , u) ⇒ xk+1 − xk = δk f (tk+1, xk+1, uk+1),∫ tF

t0

L(x(t), u(t))dt ⇒
K∑
t=1

δkL(xk , uk).

Trapezoidal collocation (N = 2)4:

Collocation points: t0, t2, . . . , tK .

ẋ(t) = f (t, x(t), u(t)) ⇒ xk+1 − xk =
1

2
δk(fk+1 − fk),∫ tF

t0

L(x(t), u(t))dt ⇒
K∑
t=1

1

2
δk(Lk + Lk+1).

4fk := f (tk , xk , uk), Lk := (xk , uk)
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Computational Methods Direct Methods

Direct Collocation

Hermite–Simpson collocation (N = 3):

Collocation points: t0, t 1
2
, t1, . . . , tK−1, tK− 1

2
, tK .

ẋ(t) = f (t, x(t), u(t)) ⇒

{
xk+1 − xk = 1

6δk(fk + 4fk+ 1
2
+ fk+1)

xk+ 1
2
= 1

2(xk+1 + xk) +
1
8δk(fk − fk+1)

h(x(t), u(t)) ≤ 0 ⇒ h(xk , uk) ≤ 0, h(xk+ 1
2
, uk+ 1

2
) ≤ 0.∫ tF

t0

L(x(t), u(t))dt ⇒
K−1∑
k=0

1

6
δk(Lk + Lk+ 1

2
+ Lk+1).

Attention: Objective approximation should be consistent with the
dynamics approximation.
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Computational Methods Direct Methods

Direct Collocation — Example

(One external animation)

(a) Interpolation and simulated
trajectory.

(b) Errors along the trajectory.

Figure: Forward Euler simulation results.
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Computational Methods Direct Methods

Direct Collocation — Example

(a) State trajectory. (b) Errors along the trajectory.

Figure: trapezoidal collocation simulation results.
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Computational Methods Direct Methods

Direct Collocation

Advantages:

Straightforward for most applications.

Easy to handle constraints.

Sparse gradient matrices leads to a sparse NLP.

Notes:

In practice, Hermite-Simpson collocation gives satisfactory results.

Higher-order collocation requires more computation, may not be
necessary.

Progressive refinement: first forward Euler, then trapezoidal, and then
Hermite-Simpson.

Initial guess matters.
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Computational Methods Direct Methods

Other Collocation Methods

Collocation methods can be further categorized into

local collocation: select polynomials collocation points in each time
interval [tk , tk+1].

global collocation: select polynomial and collocation points in
[t0, tF ].

Orthogonal Collocation methods (local collocation)

use zeros of certain polynomial as collocation points;

use orthogonal polynomial as basis, such as Chebyshev polynomials
and Legendre polynomials.
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Computational Methods Indirect Methods

Indirect Methods

Recall the trajectory optimization problem:

min
u(·)

J(u(·)) := Φ(x(tF )) +

∫ tF

t0

L(τ, x(τ), u(τ))dτ

s.t. ẋ(t) = f (t, x(t), u(t)),

h(t, x(t), u(t)) ≤ 0,

g(tF , x(tF )) ≤ 0,

u(t) ∈ U .

(TO)

We investigate optimality conditions (counterpart of KKT conditions in
infinite dimensional spaces).
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Computational Methods Indirect Methods

Indirect Methods

Define Hamiltonian H(t, x , u, λ, µ) = L+ λT f + µTh,

λ(t) is the costate;

µ(t) ≥ 0, ν ≥ 0 are Lagrangian multipliers for path and terminal
constraints.

Optimality conditions for ⟨x , u∗, λ, µ, ν⟩:

ẋ =
∂H

∂λ
, λ̇ = −∂H

∂x
,

u∗ = argmin
u∈U

H,

λ(tF ) =
∂Φ

∂x(tF )
+ νT

∂g

∂x(tF )
,

µTh = 0, µ ≥ 0, h ≤ 0,

νTg = 0, ν ≥ 0, g ≤ 0.

(opt)
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Computational Methods Indirect Methods

Indirect Methods

Notes:

Any solution ⟨x(t), u(t), λ(t), µ(t), ν⟩ of the conditions is an
extramal.

In practice, argminu H is often replaced by ∂H
∂u = 0.

Calculus of variations and optimal control theory: A concise
introduction. (Liberzon, 2009).

Indirect methods:

Indirect shooting.

Indirect multiple shooting.

Indirect collocation.

(NYU) Trajectory Optimization April 10, 2023 56 / 73



Computational Methods Indirect Methods

Indirect Shooting

Idea: parameterize uθ(t) and simulate x(t) and λ(t).

Decision variables θ, λ0, ν.

Use finite difference to compute gradient.

∇uH = 0,

∂Φ(x(tF ))

∂x
+ νT

∂g(x(tF ))

∂x
− λ(tF ) = 0,

νTg = 0,

ν ≥ 0, g(x(tF )) ≤ 0.

(3)

Equivalent to F (z) = 0,G (z) ≤ 0. Newton’s method.

Complementarity constraints needs good initial guesses.

Difficult to deal with path constraints because µ(t) is a trajectory.

Usually unstable, good heuristic is required.
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Computational Methods Indirect Methods

Indirect Multiple Shooting

Idea:

Divide [t0, tF ] into K intervals [tk , tk+1].

Decision variables θ, {xk}Kk=1, {λk}Kk=0.

Parameterize uθ and simulate x and λ in each interval.

x̃k =

∫
∂H

∂λ
(uθ, xk)dt, λ̃k =

∫
−∂H
∂x

(uθ, λk)dt.

Enforce continuity.

x̃k − xk+1 = 0, λ̃k − λk+1 = 0. (4)

We solve (3) + (4) in multiple shooting methods.

Stability is improved.

Still difficult to handle path constraints.
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Computational Methods Indirect Methods

Indirect Collocation

Idea:

Parameterize uθ, x(t) and λ(t). Decision variables {xk , uk , λk}Kk=0.

Apply collocation conditions and ensure constraints

We use trapezoidal collocation as an example5.

ẋ =
∂H

∂λ
⇒ xk+1 − xk =

1

2
δk(

∂Hk

∂λ
+
∂Hk+1

∂λ
),

λ̇ = −∂H
∂x

⇒ λk+1 − λk =
1

2
δk(−

∂Hk

∂x
− ∂Hk+1

∂x
),

∇uH = 0 ⇒ ∇uHk = 0, ∀k ,
g(x(t), u(t)) ≤ 0 ⇒ g(xk , uk) ≤ 0, ∀k ,

h(x(tF )) ≤ 0 ⇒ h(xK ) ≤ 0,

µTg = 0, νTh = 0 ⇒ µT
k g(xk , uk) = 0, µTh(xK ) = 0, ∀k,

µ(t) ≥ 0, ν ≥ 0 ⇒ µk ≥ 0, ν ≥ 0, ∀k .

(5)

5We denote Hk := H(xk , uk , λk , µk , ν).
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Computational Methods Indirect Methods

Indirect Collocation

We want to solve
F (z) = 0, G (z) ≤ 0.

Complementarity constraints are inherently combinatorial. Gradient
based methods is hard to explore new solutions.

Mixed integer programming or relaxed conditions µTg ≤ ϵ, νTh ≤ ϵ.
Solving (5) requires good initialization. Otherwise easy to diverge.
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Computational Methods Practical Issues

Practical Issues

Initialization:

Both direct/indirect methods rely on initial guesses.

Initialization for direct methods is easier to construct.

Indirect methods are more sensitive to initialization and easier to
diverge for bad initialization.

Combination of direct/indirect methods:

Indirect methods generate more accurate solution (if converge) than
direct methods.

Use direct methods to initialize indirect methods.
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Computational Methods Practical Issues

Practical Issues

Mesh refinement in collocation:

Solve collocation problems on a sequence of collocation meshes.

Subsequent meshes have more points and (or) higher-order
collocation methods.

Figure: Schematic of mesh refinement, from (Kelly, 2017)
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Other Methods for Trajectory Optimization

Other Methods

Model-based methods:

Dynamic Programming (DP).

Differential Dynamic Programming (DDP).

Iterative Linear Quadratic Regulator (iLQR).

Genetic Algorithms (other optimization methods)

Model-free methods:

Reinforcement learning. Reward engineering

We use discrete systems to illustrate the methodology. For continuous
systems, we discretize it and then apply the methods.
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Other Methods for Trajectory Optimization

Dynamic Programming

We look for a stationary policy πt : U → X of the problem:

min
u

T∑
t=0

γtL(xt , ut)

s.t. xk+1 = f (xk , uk), x0 given.

Bellman equation6 (fixed point equation):

V πt
t (x) = L(x , πt(x)) + γV π

t+1 (f (x , πt(x)) , ∀x .

When T →∞, πt and V πt become stationary. For optimal policy:

V ∗(x) = min
u

[L(x , u) + γV ∗(f (x , u))] , ∀x .

6For continuous-time systems, the Bellman equation is a PDE.
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Other Methods for Trajectory Optimization

Dynamic Programming

Common methods for DP:

Backward computation, Riccati equation.

Value iteration.

Policy iteration.
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Other Methods for Trajectory Optimization

Differential Dynamic Programming

DDP iteratively perturb value functions on a nominal trajectory
⟨{x̄t}Tt=0, {ūt}

T−1
t=0 ⟩ to generate new controls (David, 1966).

min
u

Φ(xT ) +
T−1∑
t=0

L(xt , ut)

s.t. xt+1 = f (xt , ut).

The value function Vt satisfies

Vt(x) = min
u
[L(x , u) + Vt+1(f (x , u))], ∀x .

Now we perturb x by δx . We want to find the perturbed ũ = u + δu as
new controls.
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Other Methods for Trajectory Optimization

Differential Dynamic Programming

We let

Qt(δx , δu) = L(x + δx , u + δu) + Vt+1(f (x + δx , u + δu))

− L(x , u)− Vt+1(f (x , u))

≈

 1
δx
δu

T  0 QT
x QT

u

Qx Qxx Qxu

Qu Qux Quu

 1
δx
δu

 ,
where Qx ,Qu,Qxx ,Quu,Qux are partial derivatives evaluated at (x̄t , ūt).

We have

δu∗ = argmin
δu

Qt(δx , δu) = −Q−1
uu (Qu + Quxδx) = kt + Ktδx .
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Other Methods for Trajectory Optimization

Differential Dynamic Programming

Algorithm 3: Differential Dynamic Programming

1 Input: Nominal trajectory ⟨x̄ , ū⟩ ;
2 while True do

// Backward pass

3 for t = T − 1, . . . , 0 do
4 Evaluate Kt , kt at (x̄t , ūt) ;

// Forward pass

5 x0 = x̄0 ;
6 for t = 0, . . . ,T − 1 do
7 ut ← ūk + kt + Ktxt ;
8 xt+1 ← f (xt , ut) ;

9 ⟨x̄ , ū⟩ ← ⟨x , u⟩ ;
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Other Methods for Trajectory Optimization

Iterative Linear Quadratic Regulator

iLQR iteratively solves a QP on a nominal trajectory ⟨{x̄t}Tt=0, {ūt}
T−1
t=0 ⟩ to

obtain new controls.

Let x = x̄ + δx , u = +̄δu. Linearize at ⟨x̄ , ū⟩:

min
δu

δxTT QT δxT + δqTT δxT

+
T−1∑
t=0

xTt Qtxt + uTt Rtut + xTt Stut + qTt xt + rTt ut

s.t. δxt+1 = Atδxt + Btδut ,

qt = ∇xL(x̄t , ūt), rt = ∇uL(x̄ , ū).

Qt = ∇2
xxL(x̄t , ūt),St = ∇xuL(x̄t , ūt),Rt = ∇uuL(x̄t , ūt).

A = ∇x f (xt , ut),B = ∇uf (xt , ut).
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Summary

Summary

We have briefly introduced

applications of trajectory optimization in robotics;

numerical methods for solving continuous-time optimal control
problems;

common model-based methods for optimal control (discrete systems).

Ideas and tricks:

The idea of parameterization and ODE approximation.

Euler forward discretization is not the only option.

First direct then indirect.
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Additional Resources

Some useful and powerful solvers:

MATLAB FMINCON (various methods)

scipy.optimize (various methods, SQP for nonlinear programming)

IPOPT (large scale nonlinear programming, interior point method)

SNOPT (large scale sparse nonlinear programming, SQP)

MOSEK (SDP, SOCP, convex optimization)

Gurobi (convex optimization, mixed integer programming)

CPLEX (convex optimization, mixed integer programming)

Some library for trajectory optimization:

MATLAB MPC

PSOPT (C++ interface)

OpenOCL (inactive since 2019)
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