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Concepts and Settings

Reinforcement learning:

@ Learn to make decisions, a new learning pattern (Sutton & Barto,
2018).

@ More than MDP (multi-armed bandits, POMDP).

Reason to use MDP:
o Elegant framework and math descriptions for decision making.

@ Able to quantify things and obtain analytical results.
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Concepts and Settings

In general, RL uses discounted infinite horizon MDP:
@ Described by the tuple (S, A, P, u,~).
e S, A are finite state and action sets.
o P:S x A — S is the transition kernel, p(s'|s, a).
o u:S x A— Ris the state-action reward, u(s, a).
e v € (0,1) is the discounted factor.

e Policy m: A(A) x S — [0, 1] is a conditional probability, 7(als).
e Discounted reward » ;2 7' Ex[Ut|so].
@ Sometimes we have initial state distribution p(s).
Notations:
e Random variables S, A¢, Ur 1= ue(St, A¢) at time t.
o Feasible policy set M := {mr € A(A) x S: ) m(als) =1,Vs € S}.
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Goal of RL

Find the policy m* by solving a discounted MDP:

max > Exlue(Se, Ae)lso] (1)
t=0

@ The optimal policy 7* is stationary and deterministic.

@ Averaged MDPs are also studied in some literature. The objective is
M 700 Ztho FE[ue(Se, Ar)|so] (Filar & Vrieze, 1997).
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MDP Example

Facebook
R=-1

Sleep
Quit Facebook Sleep
R=0 R=-1 R=0
Study
Study Study R=+10

Class 1

| Clas:s 3

| Class 2
R=-2 U R=-2

Figure: Student MDP Example from David Silver lecture slide.
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Value Functions

Define state value function v”(s) and action value function g”(s, a) given
a policy m € T:

v(s) = D 7 Exlue(St, Ar)ls], (2)

t=0

q"(s,a) = Y V'Exlue(St, Ar)ls, al. (3)
t=0

Relationship:

vi(s) =) _m(als)q™(s, a).

acA
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Model Based Methods
Models Based Methods

What does a model refer to in RL?
@ Reward v and transition kernel P (Sutton & Barto, 2018).

@ Discrete case: a table. Continuous case: a function.

Model based methods are also called planning.

Two categories, both uses the Bellman equation.
o lterative methods.

@ Linear programming (LP).
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Bellman Equation

For any policy w € 1,

vi(s) = Z u(s,a)r(als) +’yz (s'ls,a)m(als)v™(s"), VseS.

a

(sa)-usa)—PyZ s'|s,a)m(d'|s")q"(s',a"), V(s,a) €S x A

s’,a’

For optimal policy 7*,

v¥(s) = max< u(s, a) +vzp(s’|s,a)v“(s') , VseS.

’
s’,a

g"(s.2) = u(s.2) +7 3 p(s']s. ) maxq7(s', @), W(s.2) € S x A

s/
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Model Based Methods
Models Based Methods — LP

LP treats values v as decision variables.
min = Z (s)
in — v
v S 4

st. v(s) > u(s,a) + 72 p(s'ls,a)v(s’), Vae AVseS.

s/

@ v represents the upper bound of discounted value. So we minimize v.
@ Constraints of LP assume that optimal policy is deterministic.

@ Dual problem leads to occupancy measure.
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Model Based Methods
Model Based Methods — lterative Methods

Based on generalized policy iteration (GPI). Two processes:
e Policy evaluation (or prediction).
@ Policy improvement (or update).

Almost all RL methods are well described as GPI.

evaluation

Vs vg

improvement

Ty —’. Vg

Figure: Illustration of generalized policy iteration.
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Model Based Methods
Model Based Methods — lterative Methods

Policy evaluation:
e Compute value function v™(s) or g™ (s, a) given a policy 7.

@ Equivalent to solving a linear system v = Tv. Matrix inversion or
iteration. Guaranteed to converge.

Policy improvement:

@ Use previous value function v™ or g™ to generate a new policy 7.

@ Greedy maximization (most common).

Based on how to perform policy evaluation, we have different variants. For
example, policy iteration and value iteration.
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Model Based Methods
Model Based Methods — lterative Methods

Policy iteration: compute exact v™ or q”.

Policy Iteration (using iterative policy evaluation) for estimating

i,

)

w

Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

. Policy Evaluation

Loop:
A+0
Loop for each s € 8:
v+ V(s)
V(s) Sy, b5, 5,7() [r + 9V ()]
A — max(A, [v - V(s)])
until A < @ (a small positive number determining the accuracy of estimation)

. Policy Improvement

policy-stable + true
For each s € 8:
old-action + 7 (s)
7(s)  argmax, X, p(s',7]3,0)[r + 7V ()]
If old-action # 7(s), then policy-stable + false
If policy-stable, then stop and return V &~ v, and 7 & ,; else go to 2

(NYU)
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Model Based Methods
Model Based Methods — lterative Methods

Value iteration: update v™ or g™ only once in each iteration.

Value Iteration, for estimating 7

Algorithm parameter: a small threshold § > 0 determining accuracy of estimation
Initialize V (s), for all s € 8T, arbitrarily except that V (terminal) = 0
Loop:
| A«0
| Loop for each s € 8:
| v < V(s)
| V(s) < max, >, . p(s',7]s,a) [r+’yV(s’)]
| A + max(A, [v — V(s)])
until A < 6
Output a deterministic policy, m & 7., such that
w(s) = argmax, 3, . p(s',7|s, a) [7' + 'yV(s’)}

Figure: Value iteration algorithm.

A-policy iteration unifies two methods (Tsitsiklis & Bertsekas, 1996).
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Model Free Settings

We can only observe state, action, and reward samples.
@ 5o, 4o, Uo, S1,41,U1,-..,5T,aT, UT.
@ Do not know the transition kernel P.
@ Do not know reward function:

o Discrete case: do not know exact u(s, a) table.
o Continuous case: do not know structure of u(s, a) function.
@ Data trajectory terminology:

e Episode: a sequence of trajectory with horizon T.
o Stage: the t-th step in an episode.

Three approaches for solving MDP:
o Estimate model.
o Estimate value (Value-based methods).

e Estimate policy (Policy-based methods).
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Model Free Methods
Model Free Methods — Estimate Model

Estimate the transition matrix P and reward table u.
@ More important to estimate P, use empirical frequency.
@ Related to system identification but not the same.

@ Not common in many RL research.
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Model Free Methods
Model Free Methods — Estimate Value

Key idea of value-based methods:
e Estimate g-function using data and perform GPI.

@ Use greedy maximization to generate a new policy.

Why not v-function?

@ v-function requires model to generate the new policy.

7(-|s) = argmax ¢ u(s,a) + E p(s'ls,a)v(s') p, VseS.
a
s’,a

@ g-function only require greedy maximization.

7 (-|s) = argmaxq(s,a), VseS.
a
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Model Free Methods
Model Free Methods — Estimate Value

How to estimate g-function?
e Monte Carlo (MC) sampling (offline).
e Temporal Difference (TD) learning (online).

e Function approximation such as Deep Q-network (DQN).

Online vs Offline methods:
@ Online: observes and processes the sample at each stage.

o Offline: operates on batches of samples.
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o=
Estimate Value — MC Sampling

Use episodic sample trajectory {sy, ao, Uo, - - -, ST, aT, Ut } generated by
the policy 7 to approximate ¢™ (s, a):

T 00
Z’Ytut ~ Z’YtEw[Ut(St,AtNSOv ao] = q" (s0, a0)-
t=0 t=0

e Each trajectory can estimate g-function for multiple (s, a) pairs.
@ First-time visit MC and Every-time visit MC.
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Estimate Value — MC Sampling

Algorithm 1: First-visit MC prediction.
q”(s,a) < 0, Return(s, a) <+ 0 V(s, a);
for each episode do

Generate {sp, ao, o,

...,ST,ar,uT} using T ;

G+ 0;
fort=T,...,0do
G+ G+nyu

if (st,a:) & {(s0,a0),---,(St—1,ar—1)} then
Append G to Return(s;, a;) ;
q" (s, a) «+ ave(Return(s, a¢)) ;
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o=
Estimate Value — MC Sampling

Every (s, a) pair should be visited infinitely often to estimate g-function.

o Where to start?
@ How to generate a “useful” trajectory?

@ How to do policy improvement?

Core: use stochastic policy to encourage exploration.
@ Exploring start.
@ Use stochastic policy to ensure all (s, a) pair can be visited.

@ On-policy vs Off-policy methods.
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o=
Estimate Value — MC Sampling

Use GPI to update the policy:
@ A policy is updated at each iteration.

@ There should be a policy to generate sample trajectories at each
iteration.

On-policy methods:
@ Use the updated policy for data simulation.
@ e-greedy to ensure the policy is stochastic.
Off-policy methods:
@ Use stochastic behavior policy for data simulation.
@ Use the target policy for policy update.

@ Use important sampling to estimate the g-value.
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o=
Estimate Value — TD Learning

We can write:
[o¢]
> Y Exlue(Se, Ar)lso, a0] = to(s0, 30) + VExq" (S1, Ar)
t=0

Temporal Difference (TD):

0¢ = ut(Se, At) +79(Ser1, A1) — q(St, Ar)

@ 0 is the error in q(S¢, At), available at time ¢t + 1.
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o=
Estimate Value — TD Learning

TD(0) or one-step TD:
@ Update g-function at every stage by boot strapping.

Algorithm 2: TD(0) for prediction.
Initialize ¢™ (s, a) ¥(s,a), a € (0,1] ;
for each episode do
Initialize S, A ;
for each staget =0,..., T —1do
Observe U; and S’ ;
Take action A’ from 7 ;
q(S,A) < q(S,A) + a[Ut + ’Yq(sl7 A/) —q(S,A)];
S S, A A
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o=
Estimate Value — TD Learning

GPI can be applied to each stage. Some RL methods with TD(0):
@ SARSA: on policy, use e-greedy policy to generate data.

Q(St, Ar) < Q(St, Ar) + afUs + vQ(St41, Arv1) — Q(St, A)]-
@ Q-learning: off policy, use e-greedy policy to generate data.

Q(St, At) < Q(St, Ar) + a[Ur + v max Q(St+1,2) — Q(St, Ar)]
@ Expected-SARSA: depending on what policy to generate data.

Q(St, Ar) < Q(St, At) + afUr + VEx[Q(St+1, a)] — Q(Se, At)].
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o=
Estimate Value — TD Learning

MC method, g-function is estimated by episodic data.
o0
Z’VtErr[Ut(SnAt”SO, ao] = Up + Uy + -+~ Ur.
t=0

one-step TD, g-function bootstraps on 1-step reward.

Z’Ywa[Ut(StyAt”SOy ao] = Up +vq(51, A1)
t=0

n-step TD, g-function bootstraps on n-step reward.

[ee)

D A Er[ue(Se, Ar)lso, a0] & Up + Ui + -+ +7"  Un-1+7"0(Sn, An)-
t=0
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o=
Estimate Value — TD Learning

An example of n-step TD with n = 2:

q(St, Ae) < q(Se, At) + a[Us + yUr 1 + ’}’ZQ(St+27 Ati2) — q(St, Ar)]

@ The learning happens after the first n samples are observed.
@ The learning processes data stage-by-stage after the first n stages.
@ When t+n> T, we set Uy, =0.

@ The policy improvement is greedy argmax.
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Estimate Value — Function Approximation

Use parameterized functions to approximate g-function.
@ Suitable when state space S is large.
@ Feature extraction is generally required to process S.

@ Action space is still discrete and small.

Approximation methods:
e Linear function approximation: g(s,a) = 6" x.

@ Nonliner function approximation gy(s, a):

o Neural network (Mnih, 2015).
e Polynomials.
o Kernel based functions.
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Estimate Value — Function Approximation

Minimize least square error
mein Er.[q" (s, a) — qo(s, a)]%,
p is the state distribution of interest. Stochastic Gradient Descent (SGD).
Orr1 < 0r — a[q" (S, At) — qo(St, At)Vaqo(St, At).

The problem becomes estimating g™ (S¢, A¢):
@ Using sample trajectory, g™ < G;.
e Using TD(0), g™ < Ut + vqo(St+1, Art1).
o Other ...
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Estimate Value — Function Approximation

Least square TD (Bradtke & Barto, 1996):
@ Use linear parameterization to approximate v-function.
e Minimize Bellman residual ||Vy) — U — yPNVy]|.

Least square policy iteration (Lagoudakis, 2003):
@ Use linear parameterization to approximate g-function.
e Minimize Bellman residual ||Qy — U — vPMNQp||.

@ Use greedy argmax to update policy.
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Model Free Methods — Estimate Policy

Comparison:
@ Value-based methods first find value functions and then update policy.
@ Policy-based methods search policy directly.

Key idea:

e Parameterize policy 7y so that the value becomes v7(s).
@ Maximize the value v™(s) because v*(s) = max, v”(s).

(4] 0t+1 — 91- +aav7+9(50)

Suitable for continuous action spaces or large discrete action spaces.
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o=
Model Free Methods — Estimate Policy

Policy gradient:

=2_d"() )30 O g,

with d™(s) = > "2 v Pr(so — s¢, t, 7).

e Use Vlog(f(x)) = Vf:;)(:;) we have

8v;"0(5) _ Eﬂ—[qﬂe (5, a)V@ |Og(7T0(a‘5))]

with E; refers to Eg g ar-

@ Need to estimate g-function to compute the policy gradient.
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o=
Model Free Methods — Estimate Policy

Many ways to parameterize the policy 7

@ Linear approximation: 7y = 67 x.
ehe(s,a)

e Exponential soft-max: my(als) = AL
b

@ Neural network.

Based on how to estimate g-function:
e REINFORCE (Williams, 1992).
e Estimate g™ via MC sampling: g™ (s, a) = ZZ:O ~tUs.
o Use baseline to reduce learning variance: g™ (s,a) — q™(s,a) — b(s).
@ Actor-critic (Sutton, 1984).
o Parameterize g-function with another w: ¢, (s, a).
e Use one-step TD to update g-function stage-by-stage. Online method.

® Wiyl — Wi + ad: Vi qu (S, At) with one-step TD error
0r = U + qu(5t+17At+1) - qW(St7At)-
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o=
Model Free Methods — Estimate Policy

Some well known policy gradient methods (Lil'Log).
@ Deterministic Policy Gradient (DPG) (Silver, 2014).

@ Deep Deterministic Policy Gradient (DDPG) (Lillicrap, 2016).
@ Trust Region Policy Optimization (TRPO) (Schulman, 2015).

@ Proximal Policy Optimization (PPO) (Schulman, 2017).
@ Phasic Policy Gradient (PPG) (Cobbe, 2020).
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Basic Settings and Approaches

The tuple (S, A, P, u,7).
@ Continuous state discrete action.

@ Continuous state continuous action.

Do methods for discrete MDPs apply to continuous counterparts?
@ Yes, but some of them have additional challenges.
@ Infinite dimensional problem. Only option: function approximation.

@ Previous value and policy approximation methods are ready to use.

Approaches:
@ Learn the model. Too complex and rarely used (Hasselt, 2012).
@ Learn the value.

@ Learn the policy.

(NYU) Reinforcement Learning June 10, 2022 38/41



ST
Approaches for Continuous MDP

Additional challenges happens in value-based methods.
@ Curse of dimensionality to discretize action space.

@ Greedy argmax is hard. Require global maximizer of the g-function.

Value function estimation:
e Minimize square error E;[q™ — gy]*> with SGD by estimating g”.

@ Minimize one-step TD error (Bellman residual):
Vg — U —yPMV4|2,. (weighted norm, same for q)

@ Minimize projected one-step TD error because of accuracy issue:
|V — proj[U + vyPMVp]||lw. (weighted norm, same for q)

Not trivial to extend the online value-based methods to continuous
settings except for some problems with quadratic g-function.
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ST
Approaches for Continuous MDP

Policy based methods are much better suited.

o Q: Are mixed strategies (7(-|s) is pdf) in continuous MDP equivalent
to a pure strategy (7(-|s) = u(s) is a number)?

TD() learning is missing.
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Recommended Materials

RL course notes (David Silver, UCL).
Reinforcement Learning An Introduction (Sutton & Barto, 2018).

Markov Decision Processes (Puterman, 1990).

Neuro-Dynamic Programming (Bertsekas & Tsitsiklis, 1996).
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