Koopman Operator and Control

Yuhan Zhao

LARX Group Metting

(NYU) [Koopman Operator & Control](#page-52-0) March 29, 2024 1/52

4 0 F

医前头骨的

э

1 [Koopman Operator](#page-2-0)

- [Introduction to Koopman Operator](#page-3-0)
- [Koopman Invariant Subspace](#page-9-0)
- [Methods of Computing Koopman Operator](#page-15-0)
- [Spectral Properties of Koopman Operator](#page-21-0)
	- [Spectral Decomposition](#page-22-0)
	- [Spectral Computation](#page-29-0)
	- 3 [Koopman Operator for Control](#page-31-0)
		- [Basic Idea](#page-32-0)
		- **[Transformation of Nonlinear Control](#page-40-0)**
		- **[Date-Driven Approaches](#page-44-0)**

[Koopman Operator](#page-2-0)

- **•** [Introduction to Koopman Operator](#page-3-0)
- [Koopman Invariant Subspace](#page-9-0)
- **[Methods of Computing Koopman Operator](#page-15-0)**
- [Spectral Properties of Koopman Operator](#page-21-0)
	- [Spectral Decomposition](#page-22-0)
	- **[Spectral Computation](#page-29-0)**

3 [Koopman Operator for Control](#page-31-0)

- [Basic Idea](#page-32-0)
- **[Transformation of Nonlinear Control](#page-40-0)**
- [Date-Driven Approaches](#page-44-0)

- イ ヨート

4 0 F

- ← 冊 →

1 [Koopman Operator](#page-2-0)

• [Introduction to Koopman Operator](#page-3-0)

- **[Koopman Invariant Subspace](#page-9-0)**
- **[Methods of Computing Koopman Operator](#page-15-0)**
- [Spectral Properties of Koopman Operator](#page-21-0)
	- [Spectral Decomposition](#page-22-0)
	- **[Spectral Computation](#page-29-0)**

3 [Koopman Operator for Control](#page-31-0)

- [Basic Idea](#page-32-0)
- **[Transformation of Nonlinear Control](#page-40-0)**
- [Date-Driven Approaches](#page-44-0)

 \rightarrow \equiv \rightarrow

4 0 F

Given an autonomous dynamical system

$$
x_{t+1} = f(x_t), \tag{1}
$$

where $x_t \in \Omega \subset \mathbb{R}^n$, $f : \Omega \to \Omega$.

 \bullet f may be unknown or too complex for analysis.

We are interested in how the state x_t evolves.

Define a function (an observable) $g: \Omega \to \mathbb{R}$ in $\mathcal{H} := L^2(\Omega, \mu)^1$.

- Indirectly measures states, e.g., $g(x_t)$, $g(x_{t+1}) = g(f(x_t))$.
- A new observable $g' := g \circ f(x)$ indirectly monitors the evolution of f .

イロト イ押 トイヨ トイヨ トー

We define the Koopman operator $\mathcal{K}: \mathcal{H} \to \mathcal{H}$ by

$$
\mathcal{K}(g)(x) = g \circ f(x). \tag{2}
$$

- \bullet K maps one function to another function.
- For a fixed $g, \mathcal{K}(g)(x)$ measures one-step state evolution if the current state is x.

 K is an infinite-dimensional linear operator due to composition.

$$
\mathcal{K}(\alpha_1 g_1 + \alpha_2 g_2)(x) = (\alpha_1 g_1 + \alpha_2 g_2) \circ f(x)
$$

= $\alpha_1 g_1 \circ f(x) + \alpha_2 g_2 \circ f(x)$
= $\alpha_1 \mathcal{K}(g_1)(x) + \alpha_2 \mathcal{K}(g_2)(x), \ \forall g_1, g_2 \in \mathcal{H}, \alpha_1, \alpha_2 \in \mathbb{R}.$

Question: How does K help? Answer: Finite-dimensional representation of f.

Let $\mathbf{g} = [g_1, \ldots, g_m]$ be m observables. We have

$$
\mathcal{K}(\mathbf{g})=[g_1\circ f,\ldots,g_m\circ f].
$$

If $g_i \circ f \in \text{span}\{g_1, \ldots, g_m\}$ $\forall i$, i.e.,

$$
\exists \alpha_{i1}, \ldots, \alpha_{im} \text{ s.t. } g_i \circ f = \alpha_{i1}g_1 + \cdots + \alpha_{im}g_m.
$$

Then, we have

$$
\mathbf{g}(x^+) = \mathbf{g}^+(x) := \mathcal{K}(\mathbf{g})(x) = \mathcal{K}\mathbf{g}(x), \quad \forall x \in \Omega.
$$

where $K \in \mathbb{R}^{m \times m}$ and $K_{ij} = \alpha_{ij};\,x^+$ is the state after one-step.

$$
\mathbf{g}(x^+) = \mathbf{g}^+(x) := \mathcal{K}(\mathbf{g})(x) = \mathcal{K}\mathbf{g}(x), \quad \forall x \in \Omega.
$$

We say $\{g, K\}$ a finite-dimensional representation of f.

- K represent a linear relationship in H .
- \bullet K connects the elements in the function space instead of finite-dimensional space like \mathbb{R}^n .
- A linear system that directly captures measurement evolution and that indirectly monitors state evolution.

Idea of Koopman Operator

Transform a nonlinear system in finite-dimensional spaces into a linear system in infinite-dimensional spaces.

イロト イ押ト イヨト イヨト

Idea of Koopman Operator

Transform a nonlinear system in finite-dimensional spaces into a linear system in infinite-dimensional spaces.

Figure: Illustration of state trajectories x_t and observable trajectories $y_t := \bm g(x_t)$ [\(Brunton and Kutz, 2019\)](#page-49-0).

 \equiv \sim

4 **E** F

1 [Koopman Operator](#page-2-0)

- **•** [Introduction to Koopman Operator](#page-3-0)
- [Koopman Invariant Subspace](#page-9-0)
- **[Methods of Computing Koopman Operator](#page-15-0)**
- [Spectral Properties of Koopman Operator](#page-21-0)
	- [Spectral Decomposition](#page-22-0)
	- **[Spectral Computation](#page-29-0)**

3 [Koopman Operator for Control](#page-31-0)

- [Basic Idea](#page-32-0)
- **[Transformation of Nonlinear Control](#page-40-0)**
- [Date-Driven Approaches](#page-44-0)

4 0 F

∢母→

э

 Ω

Koopman Invariant Subspace

Definition

A subspace $\mathcal{M} \subset \mathcal{H}$ is a Koopman invariant subspace if $\mathcal{K}(g) \in \mathcal{M}$ $\forall g \in \mathcal{M}.$

If M is spanned by finite functions $\{g_1, \ldots, g_m\}$, i.e., for any $g \in \mathcal{M}$, there exists $\{\alpha_i\}_{i=1}^m$ and $\{\beta_i\}_{i=1}^m$ such that

 $g = \alpha_1 g_1 + \cdots + \alpha_m g_m$, and $\mathcal{K}(g) = \beta_1 g_1 + \cdots + \beta_m g_m$.

- \bullet { g_1, \ldots, g_m } are bases of the invariant subspace.
- $\overline{\mathcal{K}}$ has a finite-dimensional representation $\overline{\mathcal{K}} \in \mathbb{R}^{m \times m}$ on $\overline{\mathcal{M}}$.
- \bullet $\beta = K\alpha$.

Koopman Eigenfunction

 K is a linear operator, we can define eigenvalue and eigenfunctions.

Definition

 λ and $\phi_{\lambda}(x)$ are the eigenvalue and eigenfunction of K if

$$
\mathcal{K}(\phi_{\lambda})(x) = \lambda \phi_{\lambda}(x)
$$

- In general, $\lambda \in \mathbb{C}$.
- Any finite eigenfunctions form an invariant subspace.
- If $\{g_1, \ldots, g_m\}$ spans a Koopman invariant subspace, we can find m eigenfunctions that spans the same subspace.

Example — Observables as Coordinates

Consider the dynamical system with $x \in \mathbb{R}^2$:

$$
x_{1,t+1} = ax_{1,t}, \quad x_{2,t+1} = bx_{2,t} + (b - a^2)x_{1,t}^2.
$$

We define three observables by $g_1(x) = x_1$, $g_2(x) = x_2$, $g_3(x) = x_1^2$. Then $\mathcal{K}(\mathbf{g})(x_t)$ can be represented by

$$
\begin{bmatrix} g_1(x_{t+1}) \\ g_2(x_{t+1}) \\ g_3(x_{t+1}) \end{bmatrix} = \mathcal{K}(\mathbf{g})(x_t) = \begin{bmatrix} a & 0 & 0 \\ 0 & b & b - a^2 \\ 0 & 0 & a^2 \end{bmatrix} \begin{bmatrix} g_1(x_t) \\ g_2(x_t) \\ g_3(x_t) \end{bmatrix}.
$$

Let $y_t = \mathbf{g}(x_t)$, we have $y_{t+1} = K y_t$.

 Ω

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

Example — Eigenfunctions as Coordinates

Consider the dynamical system

$$
x_{1,t+1} = ax_{1,t}, \quad x_{2,t+1} = bx_{2,t} + (b - a^2)x_{1,t}^2.
$$

We define three observables by $\phi_1(x) = x_1, \phi_2(x) = x_2 + x_1^2, \phi_3(x) = x_2^2$.

$$
\begin{bmatrix} \phi_1(x_{t+1}) \\ \phi_2(x_{t+1}) \\ \phi_3(x_{t+1}) \end{bmatrix} = \mathcal{K}(\phi)(x_t) = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & a^2 \end{bmatrix} \begin{bmatrix} \phi_1(x_t) \\ \phi_2(x_t) \\ \phi_3(x_t) \end{bmatrix}.
$$

Let $z_t = \phi(x_t)$, we have $z_{t+1} = \Lambda z_t$.

• ${g_1, g_2, g_3}$ and ${\phi_1, \phi_2, \phi_3}$ span the same invariant subspace.

• K is not diagonal while Λ is diagonal.

イロト イ押 トイヨ トイヨ トー

Koopman Mode Decomposition

Suppose \boldsymbol{g} and ϕ span the same invariant subspace. K and Λ are their finite-dimensional representations.

Definition

We can decompose any function \boldsymbol{g}_i into the eigenfunction bases.

$$
g_i = \langle g_i, \phi_1 \rangle \phi_1 + \cdots + \langle g_1, \phi_m \rangle \phi_m.
$$

The coefficients $\mathsf{v}_{ij} = \langle \mathsf{g}_i, \phi_j \rangle$ are the Koopman modes corresponding to the eigenfunction $\phi_j, \, j=1,\ldots,m.$

- Koopman modes measure the impact of $\boldsymbol{\mathit{g}}_i$ in the direction of $\phi_j.$
- K and Λ share the same eigenvalues. $K = V \Lambda V^{-1}$.
- The *i-*th row of V provides the Koopman modes to decompose g_i .

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

1 [Koopman Operator](#page-2-0)

- **•** [Introduction to Koopman Operator](#page-3-0)
- **[Koopman Invariant Subspace](#page-9-0)**

[Methods of Computing Koopman Operator](#page-15-0)

- [Spectral Properties of Koopman Operator](#page-21-0)
	- [Spectral Decomposition](#page-22-0)
	- **[Spectral Computation](#page-29-0)**

3 [Koopman Operator for Control](#page-31-0)

- [Basic Idea](#page-32-0)
- **[Transformation of Nonlinear Control](#page-40-0)**
- [Date-Driven Approaches](#page-44-0)

4 D F

 Ω

э

Short Summary

Koopman operator theory

- **•** perceives the state evolution indirectly through g and K ;
	- An indirect approach for system identification.
	- Estimations on g and K are sufficient; no need for f.
- **•** provides a linear relationship between elements in function spaces.

Challenges to use Koopman operator:

- Find the invariant space and the finite-dimensional representation.
	- Choose the right bases g (or eigenfunctions) of the invariant space.
- \bullet Estimate K from observation data.
- Restore real states from observations if necessary.

4 **E** F

Method Overview

In general, $\mathbf{g} = \{g_1, \ldots, g_m\}$ may not be an invariant subspace.

We approximate of finite-dimensional representation:

$$
\min_{K} \quad \|\mathbf{g} \circ f - K\mathbf{g}\| := \int_{\Omega} |\mathbf{g} \circ f(x) - K\mathbf{g}(x)| \, dx.
$$

- **•** Function norm.
- \bullet Complex or unknown f. Data-driven methods.

Two categories for data-driven methods:

- Choose g and learn K : DMD, Extended DMD, Hankel DMD.
- Learn g and K : Deep Koopman.

Dynamic Mode Decomposition

We have N trajectory data

$$
X = [x_1, x_2, \dots, x_N], \quad X' = [x'_1, x'_2, \dots, x'_N]
$$

with $x'_n = f(x_n)$. We choose the measurement $\boldsymbol{g}: \Omega \to \mathbb{R}^m$:

$$
Y = \boldsymbol{g}(X) = [\boldsymbol{g}(x_1), \boldsymbol{g}(x_2), \ldots, \boldsymbol{g}(x_N)], \quad Y' = \boldsymbol{g}(X').
$$

Least square estimation:

$$
\min_{K} \|Y' - KY\|_2^2 = \sum_{i=1}^N \|\mathbf{g}(x'_i) - K\mathbf{g}(x_i)\|_2^2.
$$

Optimal solution $K^* = Y'Y^{\dagger}$.

KONKAPRA BRADE

Data-Driven Approaches

Dynamic Mode Decomposition (DMD) and its variants:

- DMD [\(Tu et al., 2014\)](#page-52-1).
	- full observation: $g_i(x) = x_i$ and $Y = X$.
- Extended DMD [\(Williams et al., 2015\)](#page-52-2).
	- Choose nonlinear g .
- Hankel DMD [\(Arbabi and Mezic, 2017\)](#page-49-1).
	- Use delay-embedding of measurements on the observables.
- Sparse identification of nonlinear dynamics [\(Brunton et al., 2016\)](#page-49-2).

Finding Koopman invariant subspace:

- Learning invariant subspace bases [\(Takeishi et al., 2017\)](#page-51-0).
- Learning eigen-functions [\(Lusch et al., 2018\)](#page-50-0), K is diagnoal.
- Learning both K and bases g [\(Yeung et al., 2019\)](#page-52-3).

G.

Related Literature

Koopman operator

- **•** Begin with the seminal works [\(Koopman, 1931;](#page-50-1) [Koopman and](#page-50-2) [Neumann, 1932\)](#page-50-2).
- Gains the renaissance from 1990s [\(Mezic, 1994;](#page-51-1) Mezić, 2005; [Rowley](#page-51-3) [et al., 2009\)](#page-51-3).
- Review on Koopman operator [\(Brunton et al., 2022;](#page-49-3) [Bevanda et al.,](#page-49-4) [2021;](#page-49-4) Mezić, 2021).
- Survey on vehicular applications using Koopman operator [\(Manzoor](#page-51-5) [et al., 2023\)](#page-51-5).

 QQ

イロト イ押 トイヨ トイヨ トー

1 [Koopman Operator](#page-2-0)

- **[Introduction to Koopman Operator](#page-3-0)**
- [Koopman Invariant Subspace](#page-9-0)
- **[Methods of Computing Koopman Operator](#page-15-0)**

2 [Spectral Properties of Koopman Operator](#page-21-0)

- [Spectral Decomposition](#page-22-0)
- **[Spectral Computation](#page-29-0)**

3 [Koopman Operator for Control](#page-31-0)

- [Basic Idea](#page-32-0)
- **[Transformation of Nonlinear Control](#page-40-0)**
- [Date-Driven Approaches](#page-44-0)

4 0 F

∢母→

1 [Koopman Operator](#page-2-0)

- **[Introduction to Koopman Operator](#page-3-0)**
- **[Koopman Invariant Subspace](#page-9-0)**
- **[Methods of Computing Koopman Operator](#page-15-0)**

[Spectral Properties of Koopman Operator](#page-21-0) • [Spectral Decomposition](#page-22-0)

• [Spectral Computation](#page-29-0)

3 [Koopman Operator for Control](#page-31-0)

- [Basic Idea](#page-32-0)
- **[Transformation of Nonlinear Control](#page-40-0)**
- [Date-Driven Approaches](#page-44-0)

4 D F

Is the following correct?

$$
\mathcal{K}(g)(x) = \sum_{\lambda \in \sigma(\mathcal{K})} \lambda v_{\lambda} \phi_{\lambda}(x), \quad \forall g \in \mathcal{H},
$$

where $\sigma(\mathcal{K})$ is the set of all eigenvalues and v_{λ} is the Koopman mode.

4 0 F

ミドマミド

Is the following correct?

$$
\mathcal{K}(g)(x) = \sum_{\lambda \in \sigma(\mathcal{K})} \lambda v_{\lambda} \phi_{\lambda}(x), \quad \forall g \in \mathcal{H},
$$

where $\sigma(\mathcal{K})$ is the set of all eigenvalues and v_{λ} is the Koopman mode.

The answer is NO.

Because the Koopman operator K has both discrete and continuous spectrum (Mezić, 2005; [Colbrook and Townsend, 2024\)](#page-49-5).

イロト イ押 トイヨ トイヨ トー

K is unitary, its spectrum is inside the unit circle $\mathbb T$ in the complex plane. We decompose it into singular (discrete) and regular (continuous) parts $^2\colon$

$$
\mathcal{K}=\mathcal{K}_{\mathsf{s}}+\mathcal{K}_{\mathsf{r}}=\sum_{\lambda\in\sigma_{\mathsf{s}}(\mathcal{K})}\lambda\mathcal{P}_{\lambda}+\int_{\mathbb{T}\setminus\sigma_{\mathsf{s}}(\mathcal{K})}y d\mathcal{E}(y).
$$

- \bullet \mathcal{P}_{λ} : $\mathcal{H} \rightarrow \mathcal{H}$ is the projection operator to the eigenspace associated with the eigenvalue λ . $\mathcal{P}_\lambda(g)=\frac{\langle g,\phi_\lambda\rangle}{\langle\phi_\lambda,\phi_\lambda\rangle}\phi_\lambda$, $g\in\mathcal{H}$.
- \bullet $\mathcal E$ is the continuous spectral measure (eigenmeasure) that is "continuously parameterized" by y.
- $\bullet \mathcal{E}(U) : \mathcal{H} \to \mathcal{H}$ is the spectral projector to the subspace spanned by the "continuous eigenfunctions" with eigenvalues in U , U is any Borel measurable subset of \mathbb{T} .

イロト イ押 トイヨ トイヨト

 2 Lebesgue measure decomposition.

Koopman mode decomposition for an arbitrary $g \in \mathcal{H}$:

$$
\mathcal{K}(g)(x) = \sum_{\lambda \in \sigma_s(\mathcal{K})} \lambda v_{\lambda} \phi_{\lambda}(x) + \int_{\mathbb{T} \setminus \sigma_s(\mathcal{K})} y \psi_{g,y}(x) dy.
$$

- v_λ is expansion coefficient $\frac{\langle g,\phi_\lambda\rangle}{\langle\phi_\lambda,\phi_\lambda\rangle}$. Koopman mode.
- $\phi \psi_{g,y}$ is a "continuously parameterized" collection of eigenfunctions. we can understand it as $d\mathcal{E}(y)g$.

Change of variable $y=e^{i\theta}$ and convert $\mathbb T$ to $[-\pi,\pi]_{\rm per}.$ We arrive at

$$
g(x_t) = \mathcal{K}^t(g)(x_0) = \sum_{\lambda \in \sigma_s(\mathcal{K})} v_{\lambda} \lambda^t \phi_{\lambda}(x_0) + \int_{[-\pi,\pi]_{\mathrm{per}}} e^{it\theta} \psi_{g,\theta}(x_0) d\theta.
$$

イロト イ何 トイヨト イヨト ニヨー

Why spectral decomposition is useful?

Check if $g \in \mathcal{H}$ has discrete/continuous part.

$$
d\nu_g(z) = \sum_{\lambda \in \sigma_s(\mathcal{K})} \langle \mathcal{P}_{\lambda}(g), g \rangle \, \delta(z-\lambda) dy + \int_{\mathbb{T} \setminus \sigma_s(\mathcal{K})} \psi_{g,y}(z) dy
$$

with $g(z) = \int_{\Omega} d\nu_{g}(z) dz$.

Example Revisited

$$
x_{1,t+1} = ax_{1,t}, \quad x_{2,t+1} = bx_{2,t} + (b - a^2)x_{1,t}^2.
$$

We choose $g_1(x) = x_1$, $g_2(x) = x_2$, $g_3(x) = x_1^2$. **g** does not have continuous spectrum when projected to the eigenspace of K .

イロト イ押 トイヨ トイヨト

э

Generally, for a $g \in \mathcal{H}$,

- discrete part is dominant;
- \bullet continuous part is related to chaotic components of f.

Choosing proper g is important. Generally, see [\(Colbrook and Townsend,](#page-49-5) [2024\)](#page-49-5)

- \bullet smooth g will have continuous part but easy to compute;
- nonsmooth g have less continuous part but hard to compute.

Finding (λ, ϕ_λ) is important.

イロト イ押 トイヨ トイヨ トー

1 [Koopman Operator](#page-2-0)

- **[Introduction to Koopman Operator](#page-3-0)**
- **[Koopman Invariant Subspace](#page-9-0)**
- **[Methods of Computing Koopman Operator](#page-15-0)**

[Spectral Properties of Koopman Operator](#page-21-0)

- **•** [Spectral Decomposition](#page-22-0)
- [Spectral Computation](#page-29-0)

3 [Koopman Operator for Control](#page-31-0)

- [Basic Idea](#page-32-0)
- **[Transformation of Nonlinear Control](#page-40-0)**
- [Date-Driven Approaches](#page-44-0)

 Ω

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

4 **ED**

∢母→

Spectrum Computation

A procedure related to ResDMD [\(Colbrook and Townsend, 2024;](#page-49-5) [Colbrook](#page-50-3) [et al., 2023\)](#page-50-3):

Figure: Procedures to recover eigenvalues and eigenfunctions of K .

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

1 [Koopman Operator](#page-2-0)

- **[Introduction to Koopman Operator](#page-3-0)**
- [Koopman Invariant Subspace](#page-9-0)
- **[Methods of Computing Koopman Operator](#page-15-0)**
- [Spectral Properties of Koopman Operator](#page-21-0)
	- [Spectral Decomposition](#page-22-0)
	- **[Spectral Computation](#page-29-0)**

3 [Koopman Operator for Control](#page-31-0)

- [Basic Idea](#page-32-0)
- **[Transformation of Nonlinear Control](#page-40-0)**
- [Date-Driven Approaches](#page-44-0)

14 E K 4 E K

4 **ED**

- ← 冊 →

 Ω

1 [Koopman Operator](#page-2-0)

- **[Introduction to Koopman Operator](#page-3-0)**
- [Koopman Invariant Subspace](#page-9-0)
- **[Methods of Computing Koopman Operator](#page-15-0)**
- [Spectral Properties of Koopman Operator](#page-21-0)
	- [Spectral Decomposition](#page-22-0)
	- **[Spectral Computation](#page-29-0)**

3 [Koopman Operator for Control](#page-31-0)

- **•** [Basic Idea](#page-32-0)
- **[Transformation of Nonlinear Control](#page-40-0)**
- [Date-Driven Approaches](#page-44-0)

- イ ヨート

4 D F

 Ω

Extending Koopman Operator for Control

Koopman operator

- Enables data-driven methods for indirect system identification.
- Works for autonomous dynamical systems.

We are interested in

- Data-driven methods for control.
- Applying Koopman operator to control.

 \leftarrow \Box

Extending Koopman Operator for Control

Given a dynamical control system

$$
x_{t+1} = f(x_t, u_t), \tag{3}
$$

where $x_t \in \Omega \subset \mathbb{R}^n$, $u_t \in \mathcal{U} \subset \mathbb{R}^m$, $f : \Omega \times \mathcal{U} \to \Omega$.

Basic idea:

- Reflect the evolution of f and the impact of an arbitrary u .
- Extend the state space to $\Omega \times \mathcal{U}$.

We define the Koopman operator $K : \mathcal{H} \to \mathcal{H}$

$$
\mathcal{K}(g)(x_t, u_t) = g(f(x_t, u_t), u_{t+1}) = g(x_{t+1}, u_{t+1}), \tag{4}
$$

where $g : \Omega \times U \to \mathbb{R}$ is a observable in H.

Control Variants

Different forms of control:

• Closed loop control: $u_t = h(x_t)$.

$$
\mathcal{K}(g)(x_t, h(x_t)) = g(x_{t+1}, h(x_{t+1})).
$$

Reduce to Koopman operator for the associated autonomous system.

Open loop control with internal control dynamics: $u_{t+1} = h(u_t)$.

$$
\mathcal{K}(g)(x_t, u_t) = g(f(x_t, u_t), h(u_t)).
$$

Reduce to Koopman operator for the associated autonomous system where μ is also a state.

• Open loop control with exogenous controls: unknown inputs.

←ロト イ母ト イヨト イヨトー

Observable Bases

Next step: find Koopman invariant subspace and linearization.

We select $\mathbf{g} = [g_1, \ldots, g_p]$ such that $\mathcal{K}(\mathbf{g}) \in \text{span}\{g_1, \ldots, g_p\}$. i.e.,

$$
\mathbf{g}(x_{t+1},u_{t+1})\approx K\mathbf{g}(x_t,u_t).
$$

• Eigen-functions are also viable choices.

$$
\mathcal{K}\phi_i(x,u)=\lambda_i\phi_i(x,u), \quad i=1,2,\ldots.
$$

イロト イ母 トイヨ トイヨ トー

G.

Observable Bases — Special Structures

People assume special structures on the observable g for control.

• Partition g into two parts:

$$
g(x, u) = g_x(x, u) + g_u(x, u).
$$

• First part is only related to the state:

$$
g_{x}(x, u) = g_{x}(x).
$$

 \bullet Linear³ of bilinear structure in the second part:

$$
g_u(x, u) = a^{\mathsf{T}} u
$$
, or $g_u(x, u) = \psi(x)(a^{\mathsf{T}} u)$.

 3 Linear structure is the most used case.

Observable Bases — Special Structures

Using linearity and causality (Korda and Mezić, 2018), we can write

$$
\mathbf{g}(x, u) = \begin{bmatrix} \mathbf{g}_x(x) & u \end{bmatrix}^\mathsf{T}.
$$

Then we have

$$
\boldsymbol{g}(x_{t+1}, u_{t+1}) = \begin{bmatrix} \boldsymbol{g}_x(x_{t+1}) \\ u_{t+1} \end{bmatrix} = \begin{bmatrix} K_{xx} & K_{xu} \\ K_{ux} & K_{uu} \end{bmatrix} \begin{bmatrix} \boldsymbol{g}_x(x_t) \\ u_t \end{bmatrix}.
$$
 (5)

We get rid of u_{k+1} since we do not predict controls, resulting in

$$
\boldsymbol{g}_{\mathsf{x}}(x_{t+1}) = K_{\mathsf{x}\mathsf{x}}\boldsymbol{g}_{\mathsf{x}}(x_t) + K_{\mathsf{x}\mathsf{u}}\boldsymbol{u}_t. \tag{6}
$$

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ K 9 Q Q

Example — System with Control

Consider the dynamical system with control:

$$
x_{1,t+1} = \mu x_{1,t}, \quad x_{2,t+1} = \lambda (x_{2,t} - x_{1,t}^2) + \delta u_t.
$$

We define $g_1(x, u) = x_1$, $g_2(x, u) = x_2$, $g_3(x, u) = x_1^2$, $g_4(x, u) = u$. Then ${\bf g}_\times (\mathsf{x}) = [g_1(\mathsf{x}) \; g_2(\mathsf{x}) \; g_3(\mathsf{x})].$ $\mathcal{K}({\bf g})(\mathsf{x}_t, u_t)$ can be represented by

$$
\mathbf{g}_x(x_{t+1}) = \begin{bmatrix} \mu & 0 & 0 \\ 0 & \lambda & -\lambda \\ 0 & 0 & \mu^2 \end{bmatrix} \mathbf{g}_x(x_t) + \begin{bmatrix} 0 \\ \delta \\ 0 \end{bmatrix} g_4(u_t).
$$

Let $y_t = \mathbf{g}_x(x_t)$, we have $y_{t+1} = Ay_t + Bu_t$.

1 [Koopman Operator](#page-2-0)

- **[Introduction to Koopman Operator](#page-3-0)**
- **[Koopman Invariant Subspace](#page-9-0)**
- **[Methods of Computing Koopman Operator](#page-15-0)**
- [Spectral Properties of Koopman Operator](#page-21-0)
	- [Spectral Decomposition](#page-22-0)
	- **[Spectral Computation](#page-29-0)**

3 [Koopman Operator for Control](#page-31-0)

- [Basic Idea](#page-32-0)
- **[Transformation of Nonlinear Control](#page-40-0)**
- [Date-Driven Approaches](#page-44-0)

4 D F

 Ω

э

Transform Nonlinear Optimal Control Problem

Nonlinear optimal control problem (NOCP):

$$
\min \quad l_{\mathcal{T}}(x_{\mathcal{T}}) + \sum_{t=0}^{T-1} l_{t}(x_{t}) + u_{t}^{\mathsf{T}} R_{t} u_{t} + r_{t}^{\mathsf{T}} u_{t}
$$
\n
$$
\text{s.t.} \quad x_{t+1} = f(x_{t}, u_{t}), \quad t = 0, \dots, \mathcal{T} - 1, \quad h_{t}(x_{t}) + c^{\mathsf{T}} u_{t} \leq 0, \quad t = 0, \dots, \mathcal{T} - 1, \quad h_{\mathcal{T}}(x_{\mathcal{T}}) \leq 0.
$$
\n
$$
(7)
$$

Tricks to select \boldsymbol{g}_{\times} :

- Augment state itself: $\mathbf{g}_x = [x, \tilde{g}]$. $(C = [I \ 0], x = Cg_x)$.
- Augment nonlinear functions in the NOCP: $\mathbf{g}_{v} = [\tilde{g}, l_0, \ldots, l_T, h_0, \ldots, h_T].$

イロト イ母 トイヨ トイヨ トー

G.

Transform Nonlinear Optimal Control Problem

Let $z_t = \mathbf{g}_x(x_t)$.

- **Compute finite-dimensional Koopman operator K.**
- \bullet Find A and B for dynamical systems.
- **Convert nonlinear constraints.**

Linearized optimal control problem:

min
$$
y_T^T Q_T y_T + \sum_{t=0}^{T-1} y_t^T Q_t y_t + u_t^T R_t u_t + r_t^T u_t
$$

s.t. $y_{t+1} = Ay_t + Bu_t$, $t = 0,..., T - 1$,
 $E_t z_t + F_t u_t \le 0$, $t = 0,..., T - 1$,
 $z_0 = \mathbf{g}_x(x_0)$. (8)

4 D F

ミドマミド

Discussions

Questions:

- Why do we partition g into two parts?
- Why do we assume linear or affine structure in u rather than in x ?
- Why do we need linear-quadratic structure in u in NOCP [\(7\)](#page-41-0)?

Discussions:

- Partition provides a notion of "control" in the lifted linear system. More convenient to process.
- \bullet x can be unknown but we must know u. Otherwise, we cannot control the original system.
- Linear or affine structure allows us access u directly. Otherwise, we need to learn the inverse function \boldsymbol{g}_{u}^{-1} to perform control.
- Linear-quadratic structure in μ is required by the linear structure in \boldsymbol{g} .

イロト イ押ト イヨト イヨト

1 [Koopman Operator](#page-2-0)

- **[Introduction to Koopman Operator](#page-3-0)**
- **[Koopman Invariant Subspace](#page-9-0)**
- **[Methods of Computing Koopman Operator](#page-15-0)**
- [Spectral Properties of Koopman Operator](#page-21-0)
	- [Spectral Decomposition](#page-22-0)
	- **[Spectral Computation](#page-29-0)**

3 [Koopman Operator for Control](#page-31-0)

- [Basic Idea](#page-32-0)
- **[Transformation of Nonlinear Control](#page-40-0)**
- **[Date-Driven Approaches](#page-44-0)**

4 D F

 Ω

Date-Driven Approaches

We have N trajectory data:

$$
X = [x_1, x_2, \ldots, x_N], \ U = [u_1, u_2, \ldots, u_N], \ X' = [x'_1, x'_2, \ldots, x'_N].
$$

with $x'_i = f(x_i, u_i)$. Linear structure in control: $\mathbf{g} = [\mathbf{g}_x \; l].$

Least square estimation:

$$
\min_{K_x, K_u} \quad \left\|K_x \mathbf{g}_x(X) + K_u U - \mathbf{g}_x(X')\right\|_2^2.
$$

- Extended DMD, the bases g are given (Korda and Mezić, 2018).
- Deep learning on g and K [\(Shi and Meng, 2022\)](#page-51-6).
	- \bullet K step prediction loss.
	- Add regularization if necessary.

Related Literature

Koopman operator for control

- Starts from Korda and Mezić (2018); [Proctor et al. \(2018\)](#page-51-7).
- Widely used in many fields, including robotics, aerospace, and traffic. See [Manzoor et al. \(2023\)](#page-51-5).

Other approaches to system identification for control.

- Dynamic Mode Decomposition with control (DMDc) [\(Proctor et al.,](#page-51-8) [2016\)](#page-51-8).
- SINDy for model predictive control [\(Kaiser et al., 2018\)](#page-50-5).
- Neural networks for model predictive control [\(Chen et al., 2018;](#page-49-6) [Li](#page-50-6) [et al., 2019;](#page-50-6) [Drgona et al., 2020\)](#page-50-7).

イロト イ母ト イヨト イヨト

Related Literature

Koopman control in robotics⁴

- Soft robots [\(Bruder et al., 2019,](#page-49-7) [2020;](#page-49-8) [Wang et al., 2022;](#page-52-4) [Alora](#page-49-9) [et al., 2023\)](#page-49-9).
- Rehabilitation [\(Goyal et al., 2022\)](#page-50-8).
- Human-robot interaction [\(Broad et al., 2020\)](#page-49-10)
- UAV/UGV [\(Folkestad et al., 2020;](#page-50-9) [Ren et al., 2022\)](#page-51-9).
- Manipulator [\(Zhang and Wang, 2023\)](#page-52-5).
- General learning for control systems and applications in robotics
	- Deep learning [\(Shi and Meng, 2022;](#page-51-6) [Yin et al., 2022\)](#page-52-6).
	- Bilinear Koopman operator [\(Bruder et al., 2021\)](#page-49-11).
	- Stable koopman operator [\(Mamakoukas et al., 2023\)](#page-51-10).
	- Control affine systems [\(Guo et al., 2021\)](#page-50-10).
	- Derivative-based Koopman operator and error bound [\(Mamakoukas](#page-51-11) [et al., 2021\)](#page-51-11).

^{...} 4 Soft robots are the most studied application area. General frameworks for Koopman learning are widely discussed. イロト イ押ト イヨト イヨト Ω

Recommended Reference

Koopman operator theory

• [Brunton et al. \(2022\)](#page-49-3); [Bevanda et al. \(2021\)](#page-49-4); Mezić (2021).

Learning methods on Koopman operator

[Takeishi et al. \(2017\)](#page-51-0); [Lusch et al. \(2018\)](#page-50-0); [Yeung et al. \(2019\)](#page-52-3).

Spectral Properties of Koopman operator

• Mezić (2005); [Colbrook and Townsend \(2024\)](#page-49-5).

Koopman operator for control

• Korda and Mezić (2018); [Proctor et al. \(2018\)](#page-51-7); [Shi and Meng \(2022\)](#page-51-6).

イロト イ押 トイヨ トイヨ トー

References I

- John Irvin Alora, Mattia Cenedese, Edward Schmerling, George Haller, and Marco Pavone. Data-driven spectral submanifold reduction for nonlinear optimal control of high-dimensional robots. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 2627–2633. IEEE, 2023.
- Hassan Arbabi and Igor Mezic. Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the koopman operator. SIAM Journal on Applied Dynamical Systems, 16(4):2096–2126, 2017.
- Petar Bevanda, Stefan Sosnowski, and Sandra Hirche. Koopman operator dynamical models: Learning, analysis and control. Annual Reviews in Control, 52:197–212, 2021.
- Alexander Broad, Ian Abraham, Todd Murphey, and Brenna Argall. Data-driven koopman operators for model-based shared control of human–machine systems. The International Journal of Robotics Research, 39(9):1178–1195, 2020.
- Daniel Bruder, C David Remy, and Ram Vasudevan. Nonlinear system identification of soft robot dynamics using koopman operator theory. In 2019 International Conference on Robotics and Automation (ICRA), pages 6244–6250. IEEE, 2019.
- Daniel Bruder, Xun Fu, R Brent Gillespie, C David Remy, and Ram Vasudevan. Data-driven control of soft robots using koopman operator theory. IEEE Transactions on Robotics, 37(3):948–961, 2020.
- Daniel Bruder, Xun Fu, and Ram Vasudevan. Advantages of bilinear koopman realizations for the modeling and control of systems with unknown dynamics. IEEE Robotics and Automation Letters, 6(3):4369-4376, 2021.
- Steven L. Brunton and J. Nathan Kutz. Data-Driven Dynamical Systems, page 229–275. Cambridge University Press, 2019. doi: 10.1017/9781108380690.008.
- Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of sciences, 113(15):3932–3937, 2016.
- Steven L. Brunton, Marko Budišić, Eurika Kaiser, and J. Nathan Kutz. Modern koopman theory for dynamical systems. SIAM Review, 64(2):229–340, 2022. doi: 10.1137/21M1401243.
- Yize Chen, Yuanyuan Shi, and Baosen Zhang. Optimal control via neural networks: A convex approach. arXiv preprint arXiv:1805.11835, 2018.
- Matthew J Colbrook and Alex Townsend. Rigorous data-driven computation of spectral properties of koopman operators for dynamical systems. Communications on Pure and Applied Mathematics, 77(1)[:221](#page-48-0)–[283](#page-50-11)[,](#page-48-0) [20](#page-49-12)[24.](#page-52-0) QQ

References II

- Matthew J Colbrook, Lorna J Ayton, and Máté Szőke. Residual dynamic mode decomposition: robust and verified koopmanism. Journal of Fluid Mechanics, 955:A21, 2023.
- Jan Drgona, Karol Kis, Aaron Tuor, Draguna Vrabie, and Martin Klauco. Differentiable predictive control: An mpc alternative for unknown nonlinear systems using constrained deep learning. arXiv preprint arXiv:2011.03699, 1, 2020.
- Carl Folkestad, Daniel Pastor, and Joel W Burdick. Episodic koopman learning of nonlinear robot dynamics with application to fast multirotor landing. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 9216–9222. IEEE, 2020.
- Tanishka Goyal, Shahid Hussain, Elisa Martinez-Marroquin, Nicholas AT Brown, and Prashant K Jamwal. Learning koopman embedding subspaces for system identification and optimal control of a wrist rehabilitation robot. IEEE Transactions on Industrial Electronics, 70(7):7092–7101, 2022.
- Zi Cong Guo, Vassili Korotkine, James R Forbes, and Timothy D Barfoot. Koopman linearization for data-driven batch state estimation of control-affine systems. IEEE Robotics and Automation Letters, 7(2):866-873, 2021.
- Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A, 474(2219):20180335, 2018.
- Bernard O Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the National Academy of Sciences, 17(5):315–318, 1931.
- Bernard O Koopman and J v Neumann. Dynamical systems of continuous spectra. Proceedings of the National Academy of Sciences, 18(3):255–263, 1932.
- Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica, 93:149–160, 2018.
- Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum, Antonio Torralba, and Russ Tedrake. Propagation networks for model-based control under partial observation. In 2019 International Conference on Robotics and Automation (ICRA), pages 1205–1211. IEEE, 2019.
- Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings of nonlinear dynamics. Nature communications, 9(1):4950, 2018. R

[Summary](#page-48-0)

References III

- Giorgos Mamakoukas, Maria L Castano, Xiaobo Tan, and Todd D Murphey. Derivative-based koopman operators for real-time control of robotic systems. IEEE Transactions on Robotics, 37(6):2173–2192, 2021.
- Giorgos Mamakoukas, Ian Abraham, and Todd D Murphey. Learning stable models for prediction and control. IEEE Transactions on Robotics, 2023.
- Waqas Manzoor, Samir Rawashdeh, and Alireza Mohammadi. Vehicular applications of koopman operator theory–a survey. IEEE Access, 2023.
- Igor Mezic. On the geometrical and statistical properties of dynamical systems: theory and applications. California Institute of Technology, 1994.
- Igor Mezić. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dynamics, 41:309–325, 2005.
- Igor Mezi´c. Koopman operator, geometry, and learning of dynamical systems. Not. Am. Math. Soc, 68(7):1087–1105, 2021.
- Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Dynamic mode decomposition with control. SIAM Journal on Applied Dynamical Systems, 15(1):142–161, 2016.
- Joshua L. Proctor, Steven L. Brunton, and J. Nathan Kutz. Generalizing koopman theory to allow for inputs and control. SIAM Journal on Applied Dynamical Systems, 17(1):909–930, 2018. doi: 10.1137/16M1062296.
- Chao Ren, Hongjian Jiang, Chunli Li, Weichao Sun, and Shugen Ma. Koopman-operator-based robust data-driven control for wheeled mobile robots. IEEE/ASME Transactions on Mechatronics, 28(1):461-472, 2022.
- Clarence W Rowley, Igor Mezić, Shervin Bagheri, Philipp Schlatter, and Dan S Henningson. Spectral analysis of nonlinear flows. Journal of fluid mechanics, 641:115–127, 2009.
- Haojie Shi and Max Q-H Meng. Deep koopman operator with control for nonlinear systems. IEEE Robotics and Automation Letters, 7(3):7700–7707, 2022.
- Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning koopman invariant subspaces for dynamic mode decomposition. Advances in neural information processing systems, 30, 2017.

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

References IV

- Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, and J. Nathan Kutz. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 1(2):391-421, 2014. ISSN 2158-2491. doi: 10.3934/jcd.2014.1.391.
- Jiajin Wang, Baoguo Xu, Jianwei Lai, Yifei Wang, Cong Hu, Huijun Li, and Aiguo Song. An improved koopman-mpc framework for data-driven modeling and control of soft actuators. IEEE Robotics and Automation Letters, 8(2):616–623, 2022.
- Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approximation of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25:1307–1346, 2015.
- Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep neural network representations for koopman operators of nonlinear dynamical systems. In 2019 American Control Conference (ACC), pages 4832-4839. IEEE, 2019.
- Hang Yin, Michael C Welle, and Danica Kragic. Embedding koopman optimal control in robot policy learning. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 13392–13399. IEEE, 2022.
- Jinxin Zhang and Hongze Wang. Online model predictive control of robot manipulator with structured deep koopman model. IEEE Robotics and Automation Letters, 2023.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Þ