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Koopman Operator Introduction to Koopman Operator

Introduction to Koopman Operator

Given an autonomous dynamical system

xt+1 = f (xt), (1)

where xt ∈ Ω ⊂ Rn, f : Ω → Ω.

f may be unknown or too complex for analysis.

We are interested in how the state xt evolves.

Define a function (an observable) g : Ω → R in H := L2(Ω, µ)1.

Indirectly measures states, e.g., g(xt), g(xt+1) = g(f (xt)).

A new observable g ′ := g ◦ f (x) indirectly monitors the evolution of f .

1g is typically in the Hilbert space H.
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Koopman Operator Introduction to Koopman Operator

Introduction to Koopman Operator

We define the Koopman operator K : H → H by

K(g)(x) = g ◦ f (x). (2)

K maps one function to another function.

For a fixed g , K(g)(x) measures one-step state evolution if the
current state is x .

K is an infinite-dimensional linear operator due to composition.

K(α1g1 + α2g2)(x) = (α1g1 + α2g2) ◦ f (x)
= α1g1 ◦ f (x) + α2g2 ◦ f (x)
= α1K(g1)(x) + α2K(g2)(x), ∀g1, g2 ∈ H, α1, α2 ∈ R.
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Koopman Operator Introduction to Koopman Operator

Introduction to Koopman Operator

Question: How does K help?
Answer: Finite-dimensional representation of f .

Let g = [g1, . . . , gm] be m observables. We have

K(g) = [g1 ◦ f , . . . , gm ◦ f ].

If gi ◦ f ∈ span{g1, . . . , gm} ∀i , i.e.,

∃ αi1, . . . , αim s.t. gi ◦ f = αi1g1 + · · ·+ αimgm.

Then, we have

g(x+) = g+(x) := K(g)(x) = Kg(x), ∀x ∈ Ω.

where K ∈ Rm×m and Kij = αij ; x
+ is the state after one-step.

(NYU) Koopman Operator & Control March 29, 2024 7 / 52



Koopman Operator Introduction to Koopman Operator

Introduction to Koopman Operator

g(x+) = g+(x) := K(g)(x) = Kg(x), ∀x ∈ Ω.

We say {g ,K} a finite-dimensional representation of f .

K represent a linear relationship in H.

K connects the elements in the function space instead of
finite-dimensional space like Rn.

A linear system that directly captures measurement evolution and
that indirectly monitors state evolution.

Idea of Koopman Operator

Transform a nonlinear system in finite-dimensional spaces into a linear
system in infinite-dimensional spaces.
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Koopman Operator Introduction to Koopman Operator

Introduction to Koopman Operator

Idea of Koopman Operator

Transform a nonlinear system in finite-dimensional spaces into a linear
system in infinite-dimensional spaces.

Figure: Illustration of state trajectories xt and observable trajectories yt := g(xt)
(Brunton and Kutz, 2019).
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Koopman Operator Koopman Invariant Subspace

Koopman Invariant Subspace

Definition

A subspace M ⊂ H is a Koopman invariant subspace if K(g) ∈ M
∀g ∈ M.

If M is spanned by finite functions {g1, . . . , gm}, i.e., for any g ∈ M,
there exists {αi}mi=1 and {βi}mi=1 such that

g = α1g1 + · · ·+ αmgm, and K(g) = β1g1 + · · ·+ βmgm.

{g1, . . . , gm} are bases of the invariant subspace.

K has a finite-dimensional representation K ∈ Rm×m on M.

β = Kα.
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Koopman Operator Koopman Invariant Subspace

Koopman Eigenfunction

K is a linear operator, we can define eigenvalue and eigenfunctions.

Definition

λ and ϕλ(x) are the eigenvalue and eigenfunction of K if

K(ϕλ)(x) = λϕλ(x)

In general, λ ∈ C.
Any finite eigenfunctions form an invariant subspace.

If {g1, . . . , gm} spans a Koopman invariant subspace, we can find m
eigenfunctions that spans the same subspace.
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Koopman Operator Koopman Invariant Subspace

Example — Observables as Coordinates

Consider the dynamical system with x ∈ R2:

x1,t+1 = ax1,t , x2,t+1 = bx2,t + (b − a2)x21,t .

We define three observables by g1(x) = x1, g2(x) = x2, g3(x) = x21 . Then
K(g)(xt) can be represented byg1(xt+1)

g2(xt+1)
g3(xt+1)

 = K(g)(xt) =

a 0 0
0 b b − a2

0 0 a2

g1(xt)g2(xt)
g3(xt)

 .
Let yt = g(xt), we have yt+1 = Kyt .
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Koopman Operator Koopman Invariant Subspace

Example — Eigenfunctions as Coordinates

Consider the dynamical system

x1,t+1 = ax1,t , x2,t+1 = bx2,t + (b − a2)x21,t .

We define three observables by ϕ1(x) = x1, ϕ2(x) = x2 + x21 , ϕ3(x) = x21 .ϕ1(xt+1)
ϕ2(xt+1)
ϕ3(xt+1)

 = K(ϕ)(xt) =

a 0 0
0 b 0
0 0 a2

ϕ1(xt)ϕ2(xt)
ϕ3(xt)

 .
Let zt = ϕ(xt), we have zt+1 = Λzt .

{g1, g2, g3} and {ϕ1, ϕ2, ϕ3} span the same invariant subspace.

K is not diagonal while Λ is diagonal.
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Koopman Operator Koopman Invariant Subspace

Koopman Mode Decomposition

Suppose g and ϕ span the same invariant subspace. K and Λ are their
finite-dimensional representations.

Definition

We can decompose any function gi into the eigenfunction bases.

gi = ⟨gi , ϕ1⟩ϕ1 + · · ·+ ⟨g1, ϕm⟩ϕm.

The coefficients vij = ⟨gi , ϕj⟩ are the Koopman modes corresponding to
the eigenfunction ϕj , j = 1, . . . ,m.

Koopman modes measure the impact of gi in the direction of ϕj .

K and Λ share the same eigenvalues. K = VΛV−1.

The i-th row of V provides the Koopman modes to decompose gi .
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Koopman Operator Methods of Computing Koopman Operator

Short Summary

Koopman operator theory

perceives the state evolution indirectly through g and K;

An indirect approach for system identification.
Estimations on g and K are sufficient; no need for f .

provides a linear relationship between elements in function spaces.

Challenges to use Koopman operator:

Find the invariant space and the finite-dimensional representation.

Choose the right bases g (or eigenfunctions) of the invariant space.

Estimate K from observation data.

Restore real states from observations if necessary.
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Koopman Operator Methods of Computing Koopman Operator

Method Overview

In general, g = {g1, . . . , gm} may not be an invariant subspace.

We approximate of finite-dimensional representation:

min
K

∥g ◦ f − Kg∥ :=

∫
Ω
|g ◦ f (x)− Kg(x)| dx .

Function norm.

Complex or unknown f . Data-driven methods.

Two categories for data-driven methods:

Choose g and learn K : DMD, Extended DMD, Hankel DMD.

Learn g and K : Deep Koopman.
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Koopman Operator Methods of Computing Koopman Operator

Dynamic Mode Decomposition

We have N trajectory data

X = [x1, x2, . . . , xN ], X ′ = [x ′1, x
′
2, . . . , x

′
N ]

with x ′n = f (xn). We choose the measurement g : Ω → Rm:

Y = g(X ) = [g(x1), g(x2), . . . , g(xN)], Y ′ = g(X ′).

Least square estimation:

min
K

∥∥Y ′ − KY
∥∥2
2
=

N∑
i=1

∥∥g(x ′i )− Kg(xi )
∥∥2
2
.

Optimal solution K ∗ = Y ′Y †.
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Koopman Operator Methods of Computing Koopman Operator

Data-Driven Approaches

Dynamic Mode Decomposition (DMD) and its variants:

DMD (Tu et al., 2014).

full observation: gi (x) = xi and Y = X .

Extended DMD (Williams et al., 2015).

Choose nonlinear g .
Hankel DMD (Arbabi and Mezic, 2017).

Use delay-embedding of measurements on the observables.

Sparse identification of nonlinear dynamics (Brunton et al., 2016).

Finding Koopman invariant subspace:

Learning invariant subspace bases (Takeishi et al., 2017).

Learning eigen-functions (Lusch et al., 2018), K is diagnoal.

Learning both K and bases g (Yeung et al., 2019).
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Koopman Operator Methods of Computing Koopman Operator

Related Literature

Koopman operator

Begin with the seminal works (Koopman, 1931; Koopman and
Neumann, 1932).

Gains the renaissance from 1990s (Mezic, 1994; Mezić, 2005; Rowley
et al., 2009).

Review on Koopman operator (Brunton et al., 2022; Bevanda et al.,
2021; Mezić, 2021).

Survey on vehicular applications using Koopman operator (Manzoor
et al., 2023).
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Spectral Properties of Koopman Operator Spectral Decomposition

Koopman Operator Spectral Decomposition

Is the following correct?

K(g)(x) =
∑

λ∈σ(K)

λvλϕλ(x), ∀g ∈ H,

where σ(K) is the set of all eigenvalues and vλ is the Koopman mode.

The answer is NO.

Because the Koopman operator K has both discrete and continuous
spectrum (Mezić, 2005; Colbrook and Townsend, 2024).
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Spectral Properties of Koopman Operator Spectral Decomposition

Koopman Operator Spectral Decomposition

K is unitary, its spectrum is inside the unit circle T in the complex plane.
We decompose it into singular (discrete) and regular (continuous) parts2:

K = Ks +Kr =
∑

λ∈σs(K)

λPλ +

∫
T\σs(K)

ydE(y).

Pλ : H → H is the projection operator to the eigenspace associated
with the eigenvalue λ. Pλ(g) =

⟨g ,ϕλ⟩
⟨ϕλ,ϕλ⟩ϕλ, g ∈ H.

E is the continuous spectral measure (eigenmeasure) that is
“continuously parameterized” by y .

E(U) : H → H is the spectral projector to the subspace spanned by
the “continuous eigenfunctions” with eigenvalues in U, U is any Borel
measurable subset of T.

2Lebesgue measure decomposition.
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Spectral Properties of Koopman Operator Spectral Decomposition

Koopman Operator Spectral Decomposition

Koopman mode decomposition for an arbitrary g ∈ H:

K(g)(x) =
∑

λ∈σs(K)

λvλϕλ(x) +

∫
T\σs(K)

yψg ,y (x)dy .

vλ is expansion coefficient ⟨g ,ϕλ⟩
⟨ϕλ,ϕλ⟩ . Koopman mode.

ψg ,y is a “continuously parameterized” collection of eigenfunctions.
we can understand it as dE(y)g .
Change of variable y = e iθ and convert T to [−π, π]per.

We arrive at

g(xt) = Kt(g)(x0) =
∑

λ∈σs(K)

vλλ
tϕλ(x0) +

∫
[−π,π]per

e itθψg ,θ(x0)dθ.
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Spectral Properties of Koopman Operator Spectral Decomposition

Koopman Operator Spectral Decomposition

Why spectral decomposition is useful?

Check if g ∈ H has discrete/continuous part.

dνg (z) =
∑

λ∈σs(K)

⟨Pλ(g), g⟩ δ(z − λ)dy +

∫
T\σs(K)

ψg ,y (z)dy

with g(z) =
∫
Ω dνg (z)dz .

Example Revisited

x1,t+1 = ax1,t , x2,t+1 = bx2,t + (b − a2)x21,t .

We choose g1(x) = x1, g2(x) = x2, g3(x) = x21 . g does not have
continuous spectrum when projected to the eigenspace of K.
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Spectral Properties of Koopman Operator Spectral Decomposition

Koopman Operator Spectral Decomposition

Generally, for a g ∈ H,

discrete part is dominant;

continuous part is related to chaotic components of f .

Choosing proper g is important. Generally, see (Colbrook and Townsend,
2024)

smooth g will have continuous part but easy to compute;

nonsmooth g have less continuous part but hard to compute.

Finding (λ, ϕλ) is important.
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Spectral Properties of Koopman Operator Spectral Computation

Spectrum Computation

A procedure related to ResDMD (Colbrook and Townsend, 2024; Colbrook
et al., 2023):

Figure: Procedures to recover eigenvalues and eigenfunctions of K.
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Koopman Operator for Control Basic Idea
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Koopman Operator for Control Basic Idea

Extending Koopman Operator for Control

Koopman operator

Enables data-driven methods for indirect system identification.

Works for autonomous dynamical systems.

We are interested in

Data-driven methods for control.

Applying Koopman operator to control.
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Koopman Operator for Control Basic Idea

Extending Koopman Operator for Control

Given a dynamical control system

xt+1 = f (xt , ut), (3)

where xt ∈ Ω ⊂ Rn, ut ∈ U ⊂ Rm, f : Ω× U → Ω.

Basic idea:

Reflect the evolution of f and the impact of an arbitrary u.

Extend the state space to Ω× U .
We define the Koopman operator K : H → H

K(g)(xt , ut) = g(f (xt , ut), ut+1) = g(xt+1, ut+1), (4)

where g : Ω× U → R is a observable in H.
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Koopman Operator for Control Basic Idea

Control Variants

Different forms of control:

Closed loop control: ut = h(xt).

K(g)(xt , h(xt)) = g(xt+1, h(xt+1)).

Reduce to Koopman operator for the associated autonomous system.

Open loop control with internal control dynamics: ut+1 = h(ut).

K(g)(xt , ut) = g(f (xt , ut), h(ut)).

Reduce to Koopman operator for the associated autonomous system
where u is also a state.

Open loop control with exogenous controls: unknown inputs.
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Koopman Operator for Control Basic Idea

Observable Bases

Next step: find Koopman invariant subspace and linearization.

We select g = [g1, . . . , gp] such that K(g) ∈ span{g1, . . . , gp}. i.e.,

g(xt+1, ut+1) ≈ Kg(xt , ut).

Eigen-functions are also viable choices.

Kϕi (x , u) = λiϕi (x , u), i = 1, 2, . . . .
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Koopman Operator for Control Basic Idea

Observable Bases — Special Structures

People assume special structures on the observable g for control.

Partition g into two parts:

g(x , u) = gx(x , u) + gu(x , u).

First part is only related to the state:

gx(x , u) = gx(x).

Linear3 of bilinear structure in the second part:

gu(x , u) = aTu, or gu(x , u) = ψ(x)(aTu).

3Linear structure is the most used case.
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Koopman Operator for Control Basic Idea

Observable Bases — Special Structures

Using linearity and causality (Korda and Mezić, 2018), we can write

g(x , u) =
[
g x(x) u

]T
.

Then we have

g(xt+1, ut+1) =

[
g x(xt+1)
ut+1

]
=

[
Kxx Kxu

Kux Kuu

] [
g x(xt)
ut

]
. (5)

We get rid of uk+1 since we do not predict controls, resulting in

g x(xt+1) = Kxxg x(xt) + Kxuut . (6)
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Koopman Operator for Control Basic Idea

Example — System with Control

Consider the dynamical system with control:

x1,t+1 = µx1,t , x2,t+1 = λ(x2,t − x21,t) + δut .

We define g1(x , u) = x1, g2(x , u) = x2, g3(x , u) = x21 , g4(x , u) = u. Then
g x(x) = [g1(x) g2(x) g3(x)]. K(g)(xt , ut) can be represented by

g x(xt+1) =

µ 0 0
0 λ −λ
0 0 µ2

 g x(xt) +

0δ
0

 g4(ut).

Let yt = g x(xt), we have yt+1 = Ayt + But .
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Koopman Operator for Control Transformation of Nonlinear Control

Transform Nonlinear Optimal Control Problem

Nonlinear optimal control problem (NOCP):

min lT (xT ) +
T−1∑
t=0

lt(xt) + uTt Rtut + rTt ut

s.t. xt+1 = f (xt , ut), t = 0, . . . ,T − 1,

ht(xt) + cTut ≤ 0, t = 0, . . . ,T − 1,

hT (xT ) ≤ 0.

(7)

Tricks to select g x :

Augment state itself: g x = [x , g̃ ]. (C = [I 0], x = Cgx).

Augment nonlinear functions in the NOCP:
g x = [g̃ , l0, . . . , lT , h0, . . . , hT ].
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Koopman Operator for Control Transformation of Nonlinear Control

Transform Nonlinear Optimal Control Problem

Let zt = g x(xt).

Compute finite-dimensional Koopman operator K .

Find A and B for dynamical systems.

Convert nonlinear constraints.

Linearized optimal control problem:

min yTTQT yT +
T−1∑
t=0

yTt Qtyt + uTt Rtut + rTt ut

s.t. yt+1 = Ayt + But , t = 0, . . . ,T − 1,

Etzt + Ftut ≤ 0, t = 0, . . . ,T − 1,

z0 = g x(x0).

(8)
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Koopman Operator for Control Transformation of Nonlinear Control

Discussions

Questions:

Why do we partition g into two parts?

Why do we assume linear or affine structure in u rather than in x?

Why do we need linear-quadratic structure in u in NOCP (7)?

Discussions:

Partition provides a notion of “control” in the lifted linear system.
More convenient to process.

x can be unknown but we must know u. Otherwise, we cannot
control the original system.

Linear or affine structure allows us access u directly. Otherwise, we
need to learn the inverse function g−1

u to perform control.

Linear-quadratic structure in u is required by the linear structure in g .
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Koopman Operator for Control Date-Driven Approaches

Date-Driven Approaches

We have N trajectory data:

X = [x1, x2, . . . , xN ], U = [u1, u2, . . . , uN ], X
′ = [x ′1, x

′
2, . . . , x

′
N ].

with x ′i = f (xi , ui ). Linear structure in control: g = [g x I ].

Least square estimation:

min
Kx ,Ku

∥∥Kxg x(X ) + KuU − g x(X
′)
∥∥2
2
.

Extended DMD, the bases g are given (Korda and Mezić, 2018).

Deep learning on g and K (Shi and Meng, 2022).

K step prediction loss.
Add regularization if necessary.
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Koopman Operator for Control Date-Driven Approaches

Related Literature

Koopman operator for control

Starts from Korda and Mezić (2018); Proctor et al. (2018).

Widely used in many fields, including robotics, aerospace, and traffic.
See Manzoor et al. (2023).

Other approaches to system identification for control.

Dynamic Mode Decomposition with control (DMDc) (Proctor et al.,
2016).

SINDy for model predictive control (Kaiser et al., 2018).

Neural networks for model predictive control (Chen et al., 2018; Li
et al., 2019; Drgona et al., 2020).
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Koopman Operator for Control Date-Driven Approaches

Related Literature

Koopman control in robotics4

Soft robots (Bruder et al., 2019, 2020; Wang et al., 2022; Alora
et al., 2023).

Rehabilitation (Goyal et al., 2022).

Human-robot interaction (Broad et al., 2020)

UAV/UGV (Folkestad et al., 2020; Ren et al., 2022).

Manipulator (Zhang and Wang, 2023).
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